Type-۲ fuzzy logic controller design optimization using the PSO approach for ECG prediction
Publish place: Journal of Fuzzy Extension & Applications، Vol: 3، Issue: 2
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 128
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JFEA-3-2_005
تاریخ نمایه سازی: 1 مرداد 1401
Abstract:
In this study, a hybrid model for prediction issues based on IT۲FLS and Particle Swarm Optimization (PSO) is proposed. The main contribution of this work is to discover the ideal strategy for creating an optimal value vector to optimize the membership function of the fuzzy controller. It should be emphasized that the optimized fuzzy controller is a type-۲ interval fuzzy controller, which is better than a type-۱ fuzzy controller in handling uncertainty. The limiting membership functions of the type-۲ fuzzy set domain is type-۱ fuzzy sets, which explains the trace of uncertainty in this situation. The proposed optimization strategy was tested using ECG signal data. The accuracy of the proposed IT۲FLS_PSO estimation technique was evaluated using a number of performance metrics (MSE, RMSE, error mean, error STD). RMSE and MSE with IT۲FI were calculated as ۰.۱۱۸۳ and ۰.۰۵۳۵, respectively. With IT۲FISPSO, these values were calculated as ۰.۰۱۴۰ and ۰.۰۰۲۹, respectively. The proposed PSO-optimized IT۲FIS controller significantly improved its performance under various operating conditions. The simulation results show that PSO is effective in designing optimal type ۲ fuzzy controllers. The experimental results show that the proposed optimization strategy significantly improves the prediction accuracy.
Keywords:
Interval type-۲ fuzzy set , Particle Swarm Optimization , optimization fuzzy controller , Fuzzy Sets , prediction problem
Authors
Mahmut Dirik
Department of Computer Engineering, Sirnak University, Turkey.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :