Objective Bayesian Analysis For a Two-parameters Exponential Distribution
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 261
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MACO-3-1_007
تاریخ نمایه سازی: 11 مرداد 1401
Abstract:
In any Bayesian inference problem, the posterior distribution is a product of the
likelihood and the prior: thus, it is a ected by both in cases where one possesses little or no
information about the target parameters in advance. In the case of an objective Bayesian
analysis, the resulting posterior should be expected to be universally agreed upon by ev-
eryone, whereas . subjective Bayesianism would argue that probability corresponds to the
degree of personal belief. In this paper, we consider Bayesian estimation of two-parameter
exponential distribution using the Bayes approach needs a prior distribution for parame-
ters. However, it is dicult to use the joint prior distributions. Sometimes, by using linear
transformation of reliability function of two-parameter exponential distribution in order to
get simple linear regression model to estimation of parameters. Here, we propose to make
Bayesian inferences for the parameters using non-informative priors, namely the (depen-
dent and independent) Je reys' prior and the reference prior. The Bayesian estimation was
assessed using the Monte Carlo method. The criteria mean square error was determined
evaluate the possible impact of prior speci cation on estimation. Finally, an application on
a real dataset illustrated the developed procedures.
Keywords:
Authors
Mehdi Jabbari Nooghabi
Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran.
Ali Soori
Department of Mathematics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
Parviz Nasiri
Department of Statistics, University of Payam Noor, ۱۹۳۹۵-۴۶۹۷ Tehran, Iran.
Farshin Hormozinejad
Department of Mathematics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
Mohammadreza Ghalani
Department of Mathematics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :