Neural network based classification of rock properties and seismic vulnerability

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 118

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_GJESM-9-1_002

تاریخ نمایه سازی: 6 شهریور 1401

Abstract:

BACKGROUND AND OBJECTIVES: Soil or rock types in a region are often interpreted qualitatively by visually comparing various geophysical properties such as seismic wave velocity and vulnerability, as well as gravity data. Better insight and less human-dependent interpretation of soil types can be obtained from a joint analysis of separated and independent geophysical parameters. This paper discusses the application of a neural network approach to derive rock properties and seismic vulnerability from horizontal-to-vertical seismic ratio and seismic wave velocity data recorded in Majalengka-West Java, Indonesia.METHODS: Seismic microtremors were recorded at ۵۴ locations and additionally multichannel analyses of surface wave experiments were performed at ۱۸ locations because the multichannel analyses of surface wave experiment needs more effort and space. From the two methods, the values of the average shear wave velocity for the upper ۳۰ meters, peak amplitudes and the dominant frequency between the measurement points were obtained from the interpolation of those geophysical data. Neural network was then applied to adaptively cluster and map the geophysical parameters. Four learning model clusters were developed from the three input seismic parameters: shear wave velocity, peak amplitude, and dominant frequency.FINDINGS: Generally, the values of the horizontal to vertical spectral ratios in the west of the study area were low (less than ۵) compared with those in the southeastern part. The dominant frequency values in the west were mostly low at around ۰.۱–۳ Hertz, associated with thick sedimentary layer. The pattern of the shear wave velocity map correlates with that of the horizontal to vertical spectral ratio map as the amplification is related to the soil or rock rigidity represented by the shear wave velocity. The combination of the geophysical data showed new features which is not found on the geological map such as in the eastern part of the study area.CONCLUSION: The application of the neural network based clustering analysis to the geophysical data revealed four rock types which are difficult to observe visually. The four clusters classified based on the variation of the geophysical parameters show a good correlation to rock types obtained from previous geological surveys. The clustering classified safe and vulnerable regions although detailed investigation is still required for confirmation before further development. This study demonstrates that low-cost geophysical experiments combined with neural network-based clustering can provide additional information which is important for seismic hazard mitigation in densely populated areas.

Authors

U. Muksin

Tsunami and Disaster Mitigation Research Center, Universitas Syiah Kuala, Banda Aceh, Indonesia

E. Riana

Tsunami and Disaster Mitigation Research Center, Universitas Syiah Kuala, Banda Aceh, Indonesia

A. Rudiyanto

Meteorological, Climatological, and Geophysical Agency, Jakarta, Indonesia

K. Bauer

GFZ German Research Centre for Geosciences, Telegrafenberg, ۱۴۴۷۳ Potsdam, Germany

A.V.H. Simanjuntak

Meteorological, Climatological, and Geophysical Agency, Jakarta, Indonesia

M. Weber

GFZ German Research Centre for Geosciences, Telegrafenberg, ۱۴۴۷۳ Potsdam, Germany

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Afnimar, A.; Rasmid, R., (۲۰۱۵). Geological and tectonic implications obtained ...
  • Jena, R.; Pradhan, B.; Beydoun, G., (۲۰۲۰). Earthquake vulnerability assessment ...
  • Arai, H.; Tokimatsu, K., (۲۰۰۴). S-wave velocity profiling by inversion ...
  • Fat-Helbary, R.E.S., El-Faragawy, K.O.; Hamed, A., (۲۰۱۹). Application of HVSR ...
  • Asten, M.W.; Askan, A.; Ekincioglu, E.E.; Sisman, F.N.; Ugurhan, B., ...
  • Bauer, K.; Muñoz, G.; Moeck, I., (۲۰۱۲). Pattern recognition and ...
  • Bauer, K.; Norden, B.; Ivanova, A.; Stiller, M.; Krawczyk, C.M., ...
  • Bauer, K.; Pratt, R.; Haberland, C.; Weber, M., (۲۰۰۸). Neural ...
  • BSSC, (۱۹۹۷). NEHRP recommended provisions for seismic regulations for new ...
  • Chávez-García, F.J.; Rodríguez, M.; Stephenson, W.R.; (۲۰۰۵). An alternative approach ...
  • Ching, F.D.; Winkel, S.R., (۲۰۱۸). Building Codes Illustrated: A Guide ...
  • Daryono, M.R.; Natawidjaja, D.H.; Sapiie, B.; Cummins, P., (۲۰۱۹). Earthquake ...
  • Day, R.W., (۲۰۱۲). Geotechnical Earthquake Engineering Handbook: With the ۲۰۱۲ ...
  • Djuri, M., (۱۹۹۵). Peta Geologi lembar Arjawinangun, Jawa, skala ۱: ...
  • Dobry, R.; Borcherdt, R.; Crouse, C.; Idriss, I.; Joyner, W.; ...
  • Gallipoli, M.R.; Mucciarelli, M., (۲۰۰۹). Comparison of site classification from ...
  • Griffin, C., (۲۰۲۰). Prosperity beyond belief: The interaction between a ...
  • Hollender, F.; Cornou, C.; Dechamp, A.; Oghalaei, K.; Renalier, F.; ...
  • Irsyam, M.; Widiyantoro, S.; Natawidjaja, D.; Meilano, I.; Rudyanto, A.; ...
  • Kanlı, A.I.; Tildy, P.; Prónay, Z., Pınar, A.; Hermann, L., ...
  • Kham, M.; Semblat, J.-F.; Bard, P.-Y.; Dangla, P., (۲۰۰۶). Seismic ...
  • Kohonen, T., (۱۹۹۰). The self-organizing map. Proc. IEEE, ۷۸(۹): ۱۴۶۴-۱۴۸۰ ...
  • Konno, K.; Ohmachi, T., (۱۹۹۸). Ground-motion characteristics estimated from spectral ...
  • Koulali, A.; McClusky, S.; Susilo, S.; Leonard, Y.; Cummins, P.; ...
  • Leyton, F.; Ruiz, S.; Sepúlveda, S.; Contreras, J.; Rebolledo, S.; ...
  • Marliyani, G.I.; Helmi, H.; Arrowsmith, J.R.; Clarke, A., (۲۰۲۰). Volcano ...
  • Muksin, U.; Bauer, K.; Haberland, C., (۲۰۱۳a). Seismic Vp and ...
  • Muksin, U.; Haberland, C.; Bauer, K.; Weber, M., (۲۰۱۳b). Three-dimensional ...
  • Nakamura, Y., (۲۰۰۰). Clear identification of fundamental idea of Nakamura’s ...
  • Nakamura, Y., (۲۰۰۹). Basic structure of QTS (HVSR) and examples ...
  • Nejad, M.M.; Momeni, M.S.; Manahiloh, K.N., (۲۰۱۸). Shear wave velocity ...
  • Pasari, S.; Simanjuntak, A.V.; Mehta, A.; Sharma, Y., (۲۰۲۱). The ...
  • Park, C.B.; Miller, R.D.; Xia, J., (۱۹۹۹). Multichannel analysis of ...
  • Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J., (۲۰۰۷). Multichannel ...
  • Ryberg, T.; Muksin, U.; Bauer, K., (۲۰۱۶). Ambient seismic noise ...
  • SESAME, W., (۲۰۰۴). Guidelines for the implementation of the H/V ...
  • Selles, A.; Deffontaines, B.; Hendrayana, H.; Violette, S., (۲۰۱۵). The ...
  • Shreyasvi, C.; Venkataramana, K.; Chopra, S., (۲۰۱۹). Local site effect ...
  • Sparks, R.S.J.; Biggs, J.; Neuberg, J.W., (۲۰۱۲). Monitoring volcanoes. Science, ...
  • Stambouli, A.B.; Zendagui, D.; Bard, P.-Y.; Derras, B., (۲۰۱۷). Deriving ...
  • Stanko, D.; Markušić, S., (۲۰۲۰). An empirical relationship between resonance ...
  • Supendi, P.; Nugraha, A.D.; Puspito, N.T.; Widiyantoro, S.; Daryono, D., ...
  • Wessel, P.; Luis, J. F.; Uieda, L.; Scharroo, R.; Wobbe, ...
  • Xia, J.; Miller, R.D.; Park, C.B., (۱۹۹۹). Estimation of near-surface ...
  • Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; ...
  • Zaputlyaeva, A.; Mazzini, A.; Blumenberg, M.; Scheeder, G.; Kürschner, W.M.; ...
  • نمایش کامل مراجع