A numerical process of the mobile-immobile advection-dispersion model arising in solute transport

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 177

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMCS-3-3_001

تاریخ نمایه سازی: 11 مهر 1401

Abstract:

In the present article‎, ‎to find the answer to the mobile-immobile advection-dispersion model of temporal fractional order ۰< \beta \leq ۱ (MI-ADM-TF)‎, ‎which can be applied to model the solute forwarding in watershed catchment and flood‎, ‎the effective high-order numerical process is gonna be built‎.‎To do this‎, ‎the temporal-fractional derivative of the MI-ADM-TF is discretized by using the linear interpolation‎, ‎and the temporal-first derivative by applying the first-order precision of the finite-difference method‎. ‎On the other hand‎, ‎After obtaining a semi-discrete form‎, ‎to obtain the full-discrete technique‎, ‎the space derivative is approximated utilizing a collocation approach based on the Legendre basis‎.‎The convergence order of the implicit numerical design for MI-ADM-TF is discussed in that is linear‎.‎Moreover‎, ‎the temporal-discretized structure of stability is also discussed theoretically in general in the article‎.‎Eventually‎, ‎two models are offered to demonstrate the quality and authenticity of the established process‎.

Authors

Yones Esmaeelzade Aghdam

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University

Behnaz Farnam

Department of Mathematics, Qom University of Technology, Qom, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • M. Abdelkawy, M.A. Zaky, A.H. Bhrawy, D. Baleanu, Numerical simulation ...
  • B. Berkowitz, Characterizing flow and transport in fractured geological media: ...
  • A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum ...
  • Z. Chen, J. Qian, H. Zhan, L. Chen, S. Luo, ...
  • K. Coats, B. Smith, et al., Dead-end pore volume and ...
  • Z. Deng, L. Bengtsson, V.P. Singh, Parameter estimation for fractional ...
  • M.S. Field, F.J. Leij, Solute transport in solution conduits exhibiting ...
  • H.R. Ghehsareh, A. Zaghian, M. Raei, A local weak form ...
  • A. Golbabai, O. Nikan, T. Nikazad, Numerical investigation of the ...
  • S. Kim, M.L. Kavvas, Generalized Ficks law and fractional ADE ...
  • K. Kumar, R.K. Pandey, S. Sharma, Comparative study of three ...
  • Q. Liu, F. Liu, I. Turner, V. Anh, Y. Gu, ...
  • F. Liu, P. Zhuang, K. Burrage, Numerical methods and analysis ...
  • H. Mesgarani, A. Beiranvand, Y.E. Aghdam, The impact of the ...
  • H. Pourbashash, Application of high-order spectral method for the time ...
  • H. Pourbashash, D. Baleanu, M.M. Al Qurashi, On solving fractional ...
  • H. Safdari, Y. E. Aghdam, J. G´ omez-Aguilar, Shifted Chebyshev ...
  • H. Safdari, H. Mesgarani, M. Javidi, Y.E. Aghdam, Convergence analysis ...
  • S. Samuel, V. Gill, On Riesz-Caputo fractional differentiation matrix of ...
  • H. Scher, M. Lax, Stochastic transport in a disordered solid. ...
  • H. Zhang, F. Liu, M.S. Phanikumar, M.M. Meerschaert, A novel ...
  • نمایش کامل مراجع