سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Object Detection by a Hybrid of Feature Pyramid and Deep Neural Networks

Publish Year: 1402
Type: Journal paper
Language: English
View: 246

This Paper With 10 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JECEI-11-1_015

Index date: 29 October 2022

Object Detection by a Hybrid of Feature Pyramid and Deep Neural Networks abstract

kground and Objectives: Object detection has been a fundamental issue in computer vision. Research findings indicate that object detection aided by convolutional neural networks (CNNs) is still in its infancy despite -having outpaced other methods . Methods: This study proposes a straightforward, easily implementable, and high-precision object detection method that can detect objects with minimum least error. Object detectors generally fall into one-stage and two-stage detectors . Unlike one-stage detectors, two-stage detectors are often more precise, despite performing at a lower speed. In this study, a one-stage detector is proposed, and the results indicated its sufficient precision . The proposed method uses a feature pyramid network (FPN) to detect objects on multiple scales . This network is combined with the ResNet 50 deep neural network. Results: The proposed method is trained and tested on Pascal VOC 2007 and COCO datasets. It yields a mean average precision (mAP) of 41.91 in Pascal Voc2007 and 60.07% in MS COCO. The proposed method is tested under additive noise. The test images of the datasets are combined with the salt and pepper noise to obtain the value of mAP for different noise levels up to 50% for Pascal VOC and MS COCO datasets. The investigations show that the proposed method provides acceptable results. Conclusion: It can be concluded that using deep learning algorithms and CNNs and combining them with a feature network can significantly enhance object detection precision.

Object Detection by a Hybrid of Feature Pyramid and Deep Neural Networks Keywords:

Object Detection by a Hybrid of Feature Pyramid and Deep Neural Networks authors

S.M. Notghimoghadam

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran.

H. Farsi

Department of Communication Engineering, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran.

S. Mohamadzadeh

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Z. Zou, Z. Shi, Y. Guo, J. Ye, "Object Detection ...
Z. Zhao, P. Zheng, S. Xu, X. Wu, "Object detection ...
Y. Wu, J. Feng, "Development and application of artificial neural ...
R. Nasiripour, H. Farsi, S. Mohamadzadeh, "Visual saliency object detection ...
S. Pasban, S. Mohamadzadeh, J. Zeraatkar-Moghaddam, A. Shafiei, "Infant brain ...
Z. Dorrani, H. Farsi, S. Mohamadzadeh, "Image edge detection with ...
C. Seale, T. Redfern, P. Chatfield, C. Luo, k. Dempsey, ...
K. Zeng, Y. Wang,” A deep convolutional neural network for ...
H. Aliakbari, A. Abdipour, A. Costanzo, D. Masotti, R. Mirzavand, ...
Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, ...
K. He, X. Zhang, S. Ren, J. Sun, "Deep residual ...
T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, ...
Z. Liu, T. Zheng, G. Xu, Z. Yang, H. Liu, ...
K. Kim, B. Ji, D. Yoon, S. Hwang, "Self-Knowledge distillation ...
X. Du, T. Lin, P. Jin, G. Ghiasi, M. Tan, ...
L. Tychsen-Smith, L. Petersson, "Denet: Scalable real-time object detection with ...
H. Zhang, E. Fromont, S. Lefèvre, B. Avignon, "Localize to ...
G. Ghiasi, T. Lin, Q. Le, "Nas-Fpn: Learning scalable feature ...
J. Cao, Y. Pang, J. Han, X. Li, "Hierarchical shot ...
M. Tan, R. Pang, Q. Le, "Efficientdet: Scalable and efficient ...
C. Wang, I. Yeh, H. Liao, "You only learn one ...
G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T. Lin, ...
X. Dong, L. Zheng, F. Ma, Y. Yang, D. Meng, ...
T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, ...
T. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, ...
P. Rafael, S. L. Netto, E. Silva, "A survey on ...
X. Wu, D. Sahoo, S. Hoi, "Recent advances in deep ...
M. Everingham, S. Eslami, L. Gool, C. Williams, J. Winn, ...
T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, ...
Y. Shinya, "USB: Universal-scale object detection benchmark," arXiv preprint arXiv: ...
Z. Chen, J. Zhang, D. Tao, "Recursive context routing for ...
J. Azzeh, B. Zahran, Z. Alqadi, "Salt and pepper noise: ...
نمایش کامل مراجع