Titchmarsh theorem for Jacobi Dini-Lipshitz functions
Publish Year: 1394
نوع سند: مقاله ژورنالی
زبان: English
View: 105
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-7-1_010
تاریخ نمایه سازی: 11 آذر 1401
Abstract:
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space \mathrm{L}_{(\alpha,\beta)}^{p}(\mathbb{R}^{+}), (۱< p\leq ۲). It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lipschitz condition in L^{p}.
Keywords:
Authors
- -
Department of Mathematics and Computer Sciences, Faculty of Sciences, Equipe d Analyse Harmonique et Probabilies, Universite Moulay Ismail, BP ۱۱۲۰۱ Zitoune, Meknes, Morocco
- -
Department of Mathematics and Computer Sciences, Faculty of Sciences, Equipe d Analyse Harmonique et Probabilies, Universite Moulay Ismail, BP ۱۱۲۰۱ Zitoune, Meknes, Morocco
- -
Department of Mathematics, Faculty of Sciences An Chock, University of Hassan II, BP ۵۳۶۶, Maarif, Casablanca, Morocco