Forecasting educated unemployed people in Indonesia using the Bootstrap Technique
Publish place: Journal of Mahani Mathematical Research، Vol: 12، Issue: 1
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 185
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_KJMMRC-12-1_011
تاریخ نمایه سازی: 11 دی 1401
Abstract:
Forecasting is an essential analytical tool used to make future predictions based on preliminary data. However, the use of small sample sizes during analysis provides inaccurate results, known as asymptotic forecasting. Therefore, this study aims to analyze the unemployment rate of educated people in Indonesia using the bias-corrected forecasting bootstrap technique. Data were collected from a total of ۳۰ time series of educated unemployed from ۲۰۱۵ to ۲۰۱۹ using the bias-corrected bootstrap technique and determined using the interval prediction method. The bootstrap replication used is at intervals of ۱۰۰, ۲۵۰, ۵۰۰, and ۱۰۰۰. The results obtained using the R program showed that the bootstrap technique provides consistent forecasting results, better accuracy, and unbiased estimation. Moreover, the results also show that for the next ۱۰ periods, the number of educated unemployed people in Indonesia is projected to decline. The bootstrap coefficient also tends to decrease with an increase in the number of replications, at an average of ۰.۹۵۸. The interval prediction is also known to be smooth, along with a large number of bootstrap replications.
Keywords:
Authors
Umi Mahmudah
Department of Mathematics Education, IAIN Pekalongan, Pekalongan, Central Java, Indonesia
Sugiyarto Surono
Department of Mathematics, Universitas Ahmad Dahlan,Yogyakarta, Indonesia
Puguh Wahyu Prasetyo
Department of Mathematics Education, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
Annisa E. Haryati
Department of Mathematics, Universitas Ahmad Dahlan,Yogyakarta, Indonesia
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :