Evaluation of Parallel Market's Long-term Memory Based on DFA and ARDL-Based Detrending (case study: Stock Market and Exchange Rate)
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 166
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFMA-8-29_013
تاریخ نمایه سازی: 18 دی 1401
Abstract:
In this study, the relationship between stock market long-term memory and exchange rate was studied. For this purpose, the analysis of detrended fluctuations was used and in order to detrend the data, two common detrending methods and cross-detrending were used. The research data included daily information of the stock market index and the dollar exchange rate during the period ۲۰۱۴/۰۳/۲۵ to ۲۰۲۱/۰۲/۰۷ and the data analysis was performed using the regression models. The results showed that the cross-trending of parallel markets produces different results in estimating the long-term memory of the data. According to the research findings, the stock index has a short-term memory under the conventional detrending method, while the cross-detrending method shows long-term memory for this index. The results for the exchange rate showed that under the conventional detrending method, the long-term memory of the exchange rate cannot be estimated in all market volatilities situations, while the cross-detrending method showed that the exchange rate loses its long-term memory in the face of increasing market fluctuations. The results also showed that under the cross-trending method, there is a direct and significant relationship between the long-term memory of the stock market index and the exchange rate.
Keywords:
Authors
Arash Azariyoon
Ph.D. student of industrial management, Roodehen branch, Islamic azad university, Roodehen, Iran.
narges yazdanian
Assistant professor of accounting, Accounting department, Roodehen branch, Islamic azad university, Roodehen, Iran.
Alireza Mirarab
Assistant professor of accounting, Accounting department, Roodehen branch, Islamic azad university, Roodehen, Iran.
Hoda Hemmati
Assistant professor of accounting, Accounting department, Roodehen branch, Islamic azad university, Roodehen, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :