Reservoir characterization and porosity classification using probabilistic neural network (PNN) based on single and multi-smoothing parameters

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 193

This Paper With 8 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJMGE-56-4_009

تاریخ نمایه سازی: 21 دی 1401

Abstract:

A probabilistic neural network (PNN) is a feed-forward neural network using a smoothing parameter. We used the PNN algorithm based on single and multi-smoothing parameters for multi-dimensional data classification. Using multi-smoothing parameters, we implemented an improved probabilistic neural network (PNN) to estimate the porosity distribution of a gas reservoir in the North Sea. Comparing the results of implementing smoothing parameters obtained from model-based optimization and particle swarm optimization (PSO) indicated the efficiency of PNN in characterizing the gas. Also, results showed that while the PSO algorithm was able to specify smoothing parameters with more precision, about ۹%, it was very time-consuming. Finally, multi PNN based on PSO was applied to estimate the porosity distribution of the F۳ reservoir. The results validated the main fracture or gas chimney of the F۳ reservoir with higher porosity. Also, gas-bearing layers were highlighted by energy and similarity attributes.

Authors

Masood Lashkari Ahangarani

Mining Engineering Department, Arak University of Technology, Arak, Iran

Saeed Mojeddifar

Mining Engineering Department, Arak University of Technology, Arak, Iran

Mohsen Hemmati Chegeni

Mining Engineering Department, Arak University of Technology, Arak, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Bhatt A, Helle HB. Committee neural networks for porosity and ...
  • Tiab D, Donaldson EC. Petrophysics—theory and practice of measuring reservoir ...
  • Anderson JK. Limitations of seismic inversion for porosity and pore ...
  • Schultz PS, Ronen S, Hattori M, Corbett C. Seismic-guided estimation ...
  • Adeli, H. and Panakkat, A. (۲۰۰۹). A probabilistic neural network ...
  • Leite, E.P. and de Souza Filho, C. R. (۲۰۰۹). Probabilistic ...
  • Patel, A.K. and Chatterjee, S. (۲۰۱۶). Computer vision-based limestone rock-type ...
  • Er, O., et al. (۲۰۱۲) An approach based on probabilistic ...
  • Huang, C.-J. and Liao, W.-C. (۲۰۰۳). A comparative study of ...
  • Mantzaris, D., Anastassopoulos, G. and Adamopoulos, A. (۲۰۱۱). Genetic algorithm ...
  • Shan, Y., et al. (۲۰۰۲). Application of probabilistic neural network ...
  • Gorunescu, F., et al. (۲۰۰۵). An evolutionary computational approach to ...
  • Chtioui, Y., Bertrand, D. and Barba, D. (۱۹۹۶). Reduction of ...
  • Franti, P., et al. (۲۰۰۰). Fast and memory efficient implementation ...
  • Mohebian, R., Riahi, MA., Afjeh, M. (۲۰۱۸). Detection of the ...
  • Mohebian, R., Riahi, MA., Kadkhodaie, A. (۲۰۱۹). Characterization of hydraulic ...
  • Tofighi, F., Armani, P., Chehrazi, A., Alimoradi, A. (۲۰۲۱). Comparison ...
  • Lim, J.-S., Park, H.-J. and Kim, J. (۲۰۰۶). A new ...
  • Singh, V., et al. (۲۰۰۷). Neural networks and their applications ...
  • Herrera, V.M., Russell, B. and Flores, A. (۲۰۰۶). Neural networks ...
  • Hampson, D.P., Schuelke, J.S. and Quirein, J.A. (۲۰۰۱). Use of ...
  • Chettri, S.R. and Cromp, R.F. (۱۹۹۳). Probabilistic neural network architecture ...
  • Mojeddifar, S., Chegeni, M.H. and Ahangarani, M.L. (۲۰۱۸). Gas-bearing reservoir ...
  • Kusy, M. and Kluska, J. (۲۰۱۳). Probabilistic neural network structure ...
  • Specht, D.F. and Romsdahl. H. (۱۹۹۴). Experience with adaptive probabilistic ...
  • Farrokhrooz, M. and Karimi, M. (۲۰۰۷). A performance comparison between ...
  • Specht, D.F. (۱۹۹۰). Probabilistic neural networks. Neural networks. ۳(۱): p. ...
  • El Emary, I.M. and Ramakrishnan, S. (۲۰۰۸). On the application ...
  • Mao, K.Z., Tan, K.-C. and Ser, W. (۲۰۰۰). Probabilistic neural-network ...
  • Parzen, E. (۱۹۶۲). "On estimation of a probability density function ...
  • Cacoullos, T. (۱۹۶۶). "Estimation of a multivariate density." Annals of ...
  • Kusy, M. and Zajdel, R. (۲۰۱۴). Probabilistic neural network training ...
  • Georgiou, V.L., Alevizos, P.D. and Vrahatis, M.N. (۲۰۰۸). Novel approaches ...
  • Sørensen JC, Gregersen U, Breiner M, Michelsen O. High-frequency sequence ...
  • Steeghs P, Overeem I, Tigrek S. Seismic volume attribute analysis ...
  • Tigrek S. ۳D seismic interpretation and attribute analysis of the ...
  • Gregersen U. Sequence stratigraphic analysis of Upper Cenozoic deposits in ...
  • Aminzadeh, F. and De Groot, P. (۲۰۰۶). Neural networks and ...
  • OpendTectdGB Plugins User Documentation version ۴.۲. dGB Earth Sciences. Copyright ...
  • Kennedy, J. and Eberhart, R. (۱۹۹۵). Particle swarm optimization (PSO). ...
  • Congalton, R.G. and Green, K. (۲۰۰۸). Assessing the accuracy of ...
  • نمایش کامل مراجع