Multi-criteria– Recommendations using Autoencoder and Deep Neural Networks with Weight Optimization using Firefly Algorithm
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 146
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-36-1_022
تاریخ نمایه سازی: 24 دی 1401
Abstract:
Demand for personalized recommendation systems elevated recently by e-commerce, news portals etc., to grab the customer interest on the sites. Collaborative filtering proves to be powerful technique but it always suffers from data sparsity, cold-start and robustness issues. These issues have been tackled by some approaches resulting in higher accuracy. Few of them take user profiles, item attributes and rating time as the side information along with ratings to give interpretative personalized recommendations. These type of approaches tries to find which factors mainly impacted the user to rate an item. Another approach extends the single-criteria ratings of collaborative filtering to multi-criteria ratings. Our approach exploits non-linear interpretative recommendations by exploring Multi-criteria ratings by combination of Autoencoders with dropout layer and firefly algorithm optimized weights for deep neural networks. Our approach solves data sparsity, scalability issues and fetch accurate recommendations. Experimental evaluations have been done using Yahoo! Movie and MovieLens datasets. Our approach outperforms in robustness and accuracy with respect to previous research works.
Keywords:
Authors
G. Spoorthy
Department of CSE, NIT Warangal, Warangal, India
S. G. Sanjeevi
Department of CSE, NIT Warangal, Warangal, India
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :