Analysis and investigation of nanoparticles and their application in drug delivery in cancer

Publish Year: 1401
نوع سند: مقاله کنفرانسی
زبان: English
View: 136

This Paper With 20 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

SECONGRESS01_174

تاریخ نمایه سازی: 1 بهمن 1401

Abstract:

Cancer is one of the leading causes of death and morbidity with a complex pathophysiology. Traditional cancer therapies include chemotherapy, radiation therapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multi-drug resistance pose a substantial challenge for favorable cancer treatment. The advent of nanotechnology has revolutionized the arena of cancer diagnosis and treatment. Nanoparticles (۱–۱۰۰ nm) can be used to treat cancer due to their specific advantages such as biocompatibility, reduced toxicity, more excellent stability, enhanced permeability and retention effect, and precise targeting. Cancer nanotherapeutics are swiftly progressing and are being applied to solve several limitations of conventional drug delivery systems such as non-specific biodistribution and targeting, lack of water solubility and poor oral bioavailability. Advances in protein engineering and materials science have contributed to novel nanoscale targeting approaches that may bring new hope to cancer patients. Several therapeutic nanocarriers have been approved for clinical use. Nanoparticles have been designed for optimal size and surface characteristics to improve their biodistribution and to increase their circulation time in the bloodstream. By selectively using the unique pathophysiology of tumours, such as their enhanced permeability and retention effect nanotherapeutics are able to carry loaded active drug to cancer cells. In addition to this passive targeting mechanism, active targeting strategies using ligands or antibodies directed against selected tumour targets magnify the specificity of these therapeutic nanoparticles. Drug resistance, another obstacle can also be overcome or reduced by using nanoparticles. Multifunctional and multiplex nanoparticles are now being actively investigated and are on the horizon as the next generation of nanoparticles, facilitating personalized and tailored cancer treatment.

Authors

Bentolhada Rashidi

Master of Animal Physiology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord Branch, Chaharmahal and Bakhtiari Province, Iran