A numerical solution of two-dimensional hyperbolic telegraph equation based on moving least square meshless method and radial basis functions

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 311

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CMDE-10-4_010

تاریخ نمایه سازی: 9 بهمن 1401

Abstract:

In this research, a linear combination of moving least square (MLS) and local radial basis functions (LRBFs) is considered within the framework of the meshless method to solve the two-dimensional hyperbolic telegraph equation. Besides, the differential quadrature method (DQM) is employed to discretize temporal derivatives. Furthermore, a control parameter is introduced and optimized to achieve minimum errors via an experimental approach. Illustrative examples are provided to demonstrate the applicability and efficiency of the method. The results prove the superiority of this method over using MLS and LRBF individually.

Keywords:

Meshless method , Moving least square , Local radial basis function , two-dimensional hyperbolic telegraph equation , Differential quadrature method

Authors

Sepideh Niknam

Department of Applied Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Hojatollah Adibi

Department of Applied Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • C. A. Brebbia , J. C. F. Teles, and L.C. ...
  • M. Dehghan and A. Shokri, A Meshless Method for Numerical ...
  • M. Dehghan and A. Ghesmati, Combination of meshless local weak ...
  • M. Dehghan and A. Shokri, A numerical method for solving ...
  • M. Dehghan and R. Salehi, A method based on meshless ...
  • F. Gao and C. Chi, Unconditionally stable difference schemes for ...
  • R. L. Hardy, Multiquadric equations of topography and other irregular ...
  • R. Jiwari, S. Pandit, and R. C. Mittal, A differential ...
  • S. Kazem, J. A. Rad, and K. Parand, A meshless ...
  • D. Levin, The approximation power of moving least-squares, Math. Comput, ...
  • K. M. Liew, C. Yumin, and S. Kitipornchai, Boundary Element-free ...
  • G. R. Liu, Moving Beyond the Finite Element Method, Second ...
  • C. Micchelli, Interpolation of scattered data: Distance matrices and conditionally ...
  • S. Patankar, Numerical heat transfer and fluid flow, USA, Taylor ...
  • B. Rezapour and M. A. Fariborzi Araghi, Nanoparticle delivery through ...
  • D. Rostamy, M. Emamjomea, and S. Abbasbandy, A meshless technique ...
  • K. Salkauskas, Moving least squares interpolation with thin-plate splines and ...
  • S. A. Sarra, A numerical study of the accuracy and ...
  • A. Shokri and M. Dehghan, Meshless method using radial basis ...
  • A. Shokri and M. Dehghan, A Not-a-Knot meshless method using ...
  • C. Shu and K. S. Yao, Block-marching in time with ...
  • G. D. Smith, Numerical solution of partial differential equations: finite ...
  • M. Tatari and M. Dehghan, A method for solving partial ...
  • B. Wang, A local meshless method based on moving least ...
  • Z. Zhang, L. Yumin, K. M. Cheng, and Y. Y. ...
  • Z. Zhang, P Zhao, and K. M. Liew, Improved element-free ...
  • O. C. Zienkiewicz and R. L. Taylor, The finite element ...
  • نمایش کامل مراجع