Modified Lucas polynomials for the numerical treatment of second-order boundary value problems
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 321
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CMDE-11-1_002
تاریخ نمایه سازی: 15 بهمن 1401
Abstract:
This paper is devoted to the construction of certain polynomials related to Lucas polynomials, namely, modified Lucas polynomials. The constructed modified Lucas polynomials are utilized as basis functions for the numerical treatment of the linear and non-linear second-order boundary value problems (BVPs) involving some specific important problems such as singular and Bratu-type equations. To derive our proposed algorithms, the operational matrix of derivatives of the modified Lucas polynomials is established by expressing the first-order derivative of these polynomials in terms of their original ones. The convergence analysis of the modified Lucas polynomials is deeply discussed by establishing some inequalities concerned with these modified polynomials. Some numerical experiments accompanied by comparisons with some other articles in the literature are presented to demonstrate the applicability and accuracy of the presented algorithms.
Keywords:
Lucas polynomials , Boundary value problems , Bratu equations , Singular initial value problems , Spectral methods , Operational matrix , Convergence analysis
Authors
Youssri Youssri
Department of Mathematics, Faculty of Science, Cairo University, Giza ۱۲۶۱۳, Egypt.
Shahenda Sayed
Department of Mathematics, Faculty of Science, Helwan University, Cairo ۱۱۷۹۵, Egypt.
Amany Mohamed
Department of Mathematics, Faculty of Science, Helwan University, Cairo ۱۱۷۹۵, Egypt.
Emad Aboeldahab
Department of Mathematics, Faculty of Science, Helwan University, Cairo ۱۱۷۹۵, Egypt.
Waleed Abd-Elhameed
Department of Mathematics, Faculty of Science, Cairo University, Giza ۱۲۶۱۳, Egypt.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :