Longitudinal Vibration of Nanobeams by Two-Phase Local/Nonlocal Elasticity, Rayleigh Theory, and Generalized Differential Quadrature Method

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 205

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MACS-10-2_001

تاریخ نمایه سازی: 18 بهمن 1401

Abstract:

To solve a differential equation of motion via more reliable procedures, it is essential to realize their efficiency. Whether Rayleigh's theory can be a compatible platform with two-phase local/nonlocal elasticity to render more reliable results compared to other theories or not is the main question that will be answered by this paper. Thus, nanobeam modeled by Rayleigh beam theory is analyzed by two-phase local/nonlocal elasticity. Governing equation in presence of the axial and transverse displacements is derived by means of Hamilton’s principle and differential law of two-phase elasticity. Next, fourth-order Generalized Differential Quadrature Method (GDQM) is utilized to attain the discretized two-phase formulation. In order to confirm, the method and the results are compared with the exact solution prepared and presented in the literature. Moreover, the effects of various parameters such as geometrical properties like thickness, mode shape number, Local phase fraction coefficient, and nonlocal factor on the natural frequency are investigated to clarify that utilizing these theories with a common goal how ends with more accurate results, and how affects the natural frequencies.

Authors

Reza Nazemnezhad

School of Engineering, Damghan University, Damghan, Iran

Roozbeh Ashrafian

School of Engineering, Damghan University, Damghan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Bergman, R.M., ۱۹۶۸. Asymptotic analysis of some plane problems of ...
  • Lim, C.W., Zhang, G. and Reddy, J., ۲۰۱۵. A higher-order ...
  • Eringen, A.C., ۲۰۰۲. Nonlocal continuum field theories springer, berlin ...
  • Eringen, A.C., ۱۹۸۴. Theory of nonlocal elasticity and some applications. Princeton ...
  • Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, ...
  • Fleek, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W., ۱۹۹۴. ...
  • Lei, Y., Adhikari, S. and Friswell, M.I., ۲۰۱۳. Vibration of ...
  • Farajpour, A., Ghayesh, M.H. and Farokhi, H., ۲۰۱۸. A review ...
  • Reddy, J., ۲۰۰۷. Nonlocal theories for bending, buckling and vibration ...
  • Thai, H.T., ۲۰۱۲. A nonlocal beam theory for bending, buckling, ...
  • Lu, L., Guo, X. and Zhao, J., ۲۰۱۷. A unified ...
  • Shen, Y., Chen, Y. and Li, L., ۲۰۱۶. Torsion of ...
  • Zhu, X. and Li, L., ۲۰۱۷. Twisting statics of functionally ...
  • Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., ...
  • Fernández-Sáez, J., Zaera, R., Loya, J.A. and Reddy, J., ۲۰۱۶. ...
  • Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M. and ...
  • Wang, Y.B., Zhu, X.W. and Dai, H.H., ۲۰۱۶. Exact solutions ...
  • Zhu, X., Wang, Y. and Dai, H.H., ۲۰۱۷. Buckling analysis ...
  • Qing, H., ۲۰۲۲. Well-posedness of two-phase local/nonlocal integral polar models ...
  • Khaniki, H.B., ۲۰۱۸. On vibrations of nanobeam systems. International Journal of ...
  • Fakher, M. and Hosseini-Hashemi, S., ۲۰۲۰. Vibration of two-phase local/nonlocal ...
  • Shaat, M., Faroughi, S. and Abasiniyan, L., ۲۰۱۷. Paradoxes of ...
  • Rao, S.S., ۲۰۱۹. Vibration of continuous systems. John Wiley & ...
  • Polyanin, A.D. and Manzhirov, A.V., ۲۰۰۸. Handbook of integral equations. ...
  • نمایش کامل مراجع