Novel m-PSO Optimized LQR Control Design for Flexible Link Manipulator: An Experimental Validation

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 160

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MJEE-14-2_010

تاریخ نمایه سازی: 25 بهمن 1401

Abstract:

Recently, robotic manipulators are the key industry requirement. These have find the importance to enhance the productivity as well as accuracy. Furthermore, industries are also moving towards the use of Flexible Link Manipulator (FLM) owing to their unique characteristics i.e. light weight, high speed operations, and the larger workspace. The FLM system has flexibility of link that causes vibrations and oscillations which affect adversary to the performance of robotic arm. The performance of FLM system is measured w.r.t. minimum error and oscillations in trajectory tracking. In this research paper, an attempt has been made to overcome the complications of FLM system. A full state feedback Linear Quadratic Regulator (LQR), is designed for FLM. It is observed that the designed controller can enhance the accuracy of the robotic arm, while reducing oscillations and vibrations. In addition, to enhance the performance of controller and to reduce the hassle in terms of selecting the parameter of Q matrix in LQR, modified particle swarm optimization (m-PSO) is used. The effectiveness of designed controller is simulated in MATLAB. Further, the validation of designed controller is tested on hardware FLM device. The results obtained from the simulation and hardware are compared.

Authors

Naveen Kumar

Department of Electrical Engineering, NIT Kurukshetra, India.

Jyoti Ohri

Department of Electrical Engineering, NIT Kurukshetra, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • M. Vidyasagar and M. W. Spong, "Robot Dynamics and Control". ...
  • B. Subudhi and A. S. Morris, “Dynamic Modelling, Simulation and ...
  • N. Singh and S. Rajendran, “Integral Fast Output Sampling Control ...
  • A. Dehghani and H. Khodadadi, “Fuzzy Logic Self-Tuning PID Control ...
  • Ingole, Bandyopadhyay, and Gorez, “Variable Structure Control Application for Flexible ...
  • M. Baroudi, M. Saad, and W. Ghie, “State-feedback and Linear ...
  • J. H. Yang, F. L. Lian, L. C. Fu, and ...
  • G. Song and L. Cai, “A New Approach to Robust ...
  • L. B. Gutierrez and F. L. Lewis, “Implementation of a ...
  • N. Kumar and J. Ohri, “SVM and Neural Network based ...
  • Y. Sharma and J. Ohri, “LabVIEW based Linear Quadratic Regulator ...
  • J. Ohri, N. Kumar, and M. Chinda, “an Improved Genetic ...
  • M. Patrascu and A. Ion, "Nature-Inspired Computing for Control Systems", ...
  • X. Wang, Y. Wang, H. Zhou, and X. Huai, “PSO-PID: ...
  • V. K. Singh and J. Ohri, “Simultaneous Control of Position ...
  • N. Kassarwani, J. Ohri, and A. Singh, “Performance Analysis of ...
  • A. Al-Mahturi and H. Wahid, “Optimal Tuning of Linear Quadratic ...
  • Quanser, “Quanser Manuals, Rotary Flexible ۲۰۱۱.” [Online]. Available: http://www.quanser.com/ ...
  • J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings ...
  • J. Kennedy, “The Particle Swarm: Social Adaptation of Knowledge,” pp. ...
  • S. Panda and J. Yadav, “Evolutionary echniques for model Order ...
  • G. K. Venayagamoorthy, J.-C. Hernandez, Y. del Valle, R. G. ...
  • G. C. Goodwin, S. F. Graebe, and M. E. Salgado, ...
  • Y. Shi and R. Eberhart, “A Modified Particle Swarm Optimizer,” ...
  • نمایش کامل مراجع