An Investigation of Term Weighting and Feature Selection Methods for Sentiment Analysis

Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 156

This Paper With 6 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MJEE-12-2_008

تاریخ نمایه سازی: 25 بهمن 1401

Abstract:

Sentiment analysis automatically classifies the opinions, which are expressed in a document, usually as positive or negative. A review document in general, reflects its author’s opinion about the objects mentioned in the text. Therefore, it can have many useful applications such as opinionated web search and automatic analysis of reviews. Although sentiment analysis is a kind of text classification problem, structures of review documents are different from texts like news, articles, or web pages; so that techniques applied for text classification are needed to be re-experimented for the sentiment analysis. Assigning appropriate weights to features is important to the performance of sentiment analysis so that important features can receive higher weights for the feature vectors. Feature selection reduces feature vector size by eliminating redundant or irrelevant features to improve classification accuracy. In this study, our aim is to examine the effects of term weighting methods on newly proposed Query Expansion Ranking (QER) feature selection method and also compare the classification results with one of the well-known feature selection method namely Chi-square statistic. We use three popular term weighting methods (i.e., term presence, term frequency, term frequency and inverse document frequency-tf*idf) and perform experiments using multinomial Naïve Bayes classifier. The experimental results show that when QER feature selection method is used with tf*idf term weighting method, the classification performance improves in terms of F-score.

Authors

Tuba Parlar

Department of Mathematics, Mustafa Kemal University, ۳۱۰۶۰, Hatay, Turkiye

Selma Ayşe Özel

Department of Computer Engineering, Cukurova University, ۰۱۳۳۰, Adana, Turkiye

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment ...
  • B. Pang and L. Lee, “A sentimental education: Sentiment analysis ...
  • C. Nicholls and F. Song, “Comparison of feature selection methods ...
  • M. Cetin and M. F. Amasyali, “Supervised and traditional term ...
  • B. Agarwal and N. Mittal, “Prominent feature extraction for review ...
  • T. Parlar and S. A. Ozel, “A new feature selection ...
  • J. Cai and F. Song, “Maximum entropy modeling with feature ...
  • J. Yan, N. Liu, B. Zhang, S. Yan, Z. Chen, ...
  • D. Harman, “Relevance feedback revisited,” in Proceedings of the ۱۵th ...
  • D. Harman, “Towards interactive query expansion,” in Proceedings of the ...
  • B. İ. Sevindi, “Türkçe metinlerde denetimli ve sözlük tabanlı duygu ...
  • E. Demirtas and M. Pechenizkiy, “Cross-lingual polarity detection with machine ...
  • J. Han and M. Kamber, Data Mining: Concepts and Techniques, ...
  • S. Bird, E. Klein, and E. Loper, Natural Language Processing ...
  • نمایش کامل مراجع