An Investigation of Term Weighting and Feature Selection Methods for Sentiment Analysis
Publish place: majlesi Journal of Electrical Engineering، Vol: 12، Issue: 2
Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 156
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MJEE-12-2_008
تاریخ نمایه سازی: 25 بهمن 1401
Abstract:
Sentiment analysis automatically classifies the opinions, which are expressed in a document, usually as positive or negative. A review document in general, reflects its author’s opinion about the objects mentioned in the text. Therefore, it can have many useful applications such as opinionated web search and automatic analysis of reviews. Although sentiment analysis is a kind of text classification problem, structures of review documents are different from texts like news, articles, or web pages; so that techniques applied for text classification are needed to be re-experimented for the sentiment analysis. Assigning appropriate weights to features is important to the performance of sentiment analysis so that important features can receive higher weights for the feature vectors. Feature selection reduces feature vector size by eliminating redundant or irrelevant features to improve classification accuracy. In this study, our aim is to examine the effects of term weighting methods on newly proposed Query Expansion Ranking (QER) feature selection method and also compare the classification results with one of the well-known feature selection method namely Chi-square statistic. We use three popular term weighting methods (i.e., term presence, term frequency, term frequency and inverse document frequency-tf*idf) and perform experiments using multinomial Naïve Bayes classifier. The experimental results show that when QER feature selection method is used with tf*idf term weighting method, the classification performance improves in terms of F-score.
Keywords:
Authors
Tuba Parlar
Department of Mathematics, Mustafa Kemal University, ۳۱۰۶۰, Hatay, Turkiye
Selma Ayşe Özel
Department of Computer Engineering, Cukurova University, ۰۱۳۳۰, Adana, Turkiye
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :