سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A New Optimization Method Based on Dynamic Neural Networks for Solving Non-convex Quadratic Constrained Optimization Problems

Publish Year: 1401
Type: Journal paper
Language: English
View: 376

This Paper With 18 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_COAM-7-2_002

Index date: 19 February 2023

A New Optimization Method Based on Dynamic Neural Networks for Solving Non-convex Quadratic Constrained Optimization Problems abstract

This paper presents a capable recurrent neural network, the so-called µRNN for solving a class of non-convex quadratic programming problems‎. ‎Based on the optimality conditions we construct a new recurrent neural network (µRNN)‎, ‎which has a simple structure and its capability is preserved‎. ‎The proposed neural network model is stable in the sense of Lyapunov and converges to the exact optimal solution of the original problem‎. ‎In a particular case‎, ‎the optimality conditions of the problem become necessary and sufficient‎. ‎Numerical experiments and comparisons with some existing algorithms are presented to illustrate the theoretical results and show the efficiency of the proposed network.

A New Optimization Method Based on Dynamic Neural Networks for Solving Non-convex Quadratic Constrained Optimization Problems Keywords:

A New Optimization Method Based on Dynamic Neural Networks for Solving Non-convex Quadratic Constrained Optimization Problems authors

Kobra Mohammadsalahi

Department of Mathematics‎, ‎Tabriz Branch‎, ‎Islamic Azad University‎, ‎Tabriz‎, ‎Iran‎.

Farzin Modarres Khiyabani

Department of Mathematics‎, ‎Tabriz Branch‎, ‎Islamic Azad University‎, ‎Tabriz‎, ‎Iran‎.

Nima Azarmir Shotorbani

Department of Mathematics‎, ‎Tabriz Branch‎, ‎Islamic Azad University‎, ‎Tabriz‎, ‎Iran‎.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Bacciotti, A. (۱۹۹۲). “Local stabilizability of nonlinear control systems”, Advances ...
Bazaraa, M.S., Shetty, C.M. (۱۹۹۰). “Nonlinear programming theory and algorithms”, ...
Bertsekas, D.P. (۱۹۸۹). “Parallel and distributed numerical methods”, Prentice-Hall, Englewood, ...
Best Michael, J. (۲۰۱۷). “Quadratic programming with computer programs”, Advances ...
Beyer, D., Ogier, R. (۲۰۰۰). “Tabu learning: A neural networks ...
Bian, W., Chen, X. (۲۰۱۳). “Worst-case complexity of smoothing quadratic ...
Boob, D.P. (۲۰۲۰). “Convex and structured non-convex optimization for modern ...
Carmon, Y., Duchi, J.C. (۲۰۲۰). “First-order methods for non-convex quadratic ...
Chen, X., Womersley, R., Ye, J. (۲۰۱۱). “Minimizing the condition ...
Chicone, C. (۲۰۰۶). “Ordinary differential equations with applications”; Second edition, ...
Cui, Y., Chang, T. H., Hong, M., Pang, J.S. (۲۰۲۰). ...
Effati, S., Mansoori, A., Eshaghnezhad, M. (۲۰۱۵). “A projection neural ...
Effati, S., Ranjbar, M. (۲۰۱۱). “A novel recurrent nonlinear neural ...
Eshaghnezhad, M., Effati, S., Mansoori, A. (۲۰۱۶). “A neurodynamic model ...
Gao, X.B., Liao, L.Z., Xue, W. (۲۰۰۴). “A neural network ...
Hopfield, J.J., Tank, D. (۱۹۸۵). “Neural computation of decisions in ...
Horn, R.A., Johnson, C.R. (۱۹۹۰). “Matrix Analysis”, Cambridge University Press ...
Huan, L., Fang, C., Zhouchen, L. (۲۰۲۰). “Accelerated first-order optimization ...
Huan, L., Lin, Z. (۲۰۱۹). “Provable accelerated gradient method for ...
Huang, F., Gu, B., Huo, Z., Xhen, S., Huang, H. ...
Jeyakumar, V., Lee, G.M., Li, G.Y. (۲۰۰۹). “Alternative theorems for ...
Jeyakumar, V., Rubinov, A.M., Wu, Z.Y. (۲۰۰۷). “Non-convex quadratic minimization ...
Jeyakumar V., Srisatkunarajah S. (۲۰۰۹). “Lagrange multiplier necessary condition for ...
Khalil, H.K. (۲۰۰۲). “Nonlinear systems”, Prentice Hall, Third edition ...
Kong, W., Melo, J.G., Monteiro, R.D.C. (۲۰۱۹). “An efficient adaptive ...
Leung, M.F., Wang, J. (۲۰۱۹). “Minimax and bi-objective portfolio selection ...
Liu, S., Jiang, H., Zhang, L., Mei, X. (۲۰۲۰). “A ...
Lu, S. (۲۰۱۸). “First-Order methods of solving non-convex optimization problems: ...
Luenberger, D.G. (۱۹۴۸). “Introduction to Linear and Nonlinear Programming”, Reading ...
Malek, A., Hosseinipour-Mahani, N. (۲۰۱۵). “Solving a class of non-convex ...
Mansoori, A., Effati, S. (۲۰۱۹). “An efficient neurodynamic model to ...
Mansoori, A., Effati, S. (۲۰۱۹). “Parametric NCP-based recurrent neural network ...
Modarres, F., Hassan, M.A., Leong, W.J. (۲۰۱۱). “A symmetric rank-one ...
Nasiri, J., Modarres Khiyabani, F. (۲۰۱۸). “A whale optimization algorithm ...
Nazemi, A.R. (۲۰۱۲). “A dynamic system model for solving convex ...
Nazemi, A.R. (۲۰۱۴). “A neural network model for solving convex ...
Pant, H., Soman Jayadeva, S., Bhaya, A. (۲۰۲۰). “Neurodynamical classifiers ...
Park, S., Jung, S.H., Pardalos, P.M. (۲۰۲۰). “Combining stochastic adaptive ...
Rudnick-Cohen, E., Herrmann, J.W., Azarm, S. (۲۰۲۰). “Non-convex feasibility robust ...
Slotine, J.J.E., Li, W. (۱۹۹۰). “Applied Nonlinear Control”, Wiley and ...
Strekalovsky, A.S. (۲۰۱۸). “On non-convex optimization problems with D. C. ...
Strekalovsky, A. (۲۰۱۹). “Nonconvex optimization: From global optimality conditions to ...
Tank, D.W., Hopfield, J.J. (۱۹۸۶). “Simple neural optimization networks: On ...
Tian, Y., Lu, C. (۲۰۱۱). “Nonconvex quadratic formulations and solvable ...
Valizadeh Oghani, A., Khiabani, F. M., Farahmand, F.H. (۲۰۲۰). “Data ...
Xu, C., Chai, Y., Qin, S., Wang, Z., Feng, J. ...
Xue, X., Bian, W. (۲۰۰۷). “A project neural network for ...
Yan, Y. (۲۰۱۴). “A new nonlinear neural network for solving ...
Yang, Y., Cao, J., Xu, X., Liu, J. (۲۰۱۲). “A ...
نمایش کامل مراجع