A high-gain, low-noise 3.1–10.6 GHz ultra-wideband LNA in a 0.18μm CMOS
Publish place: majlesi Journal of Electrical Engineering، Vol: 11، Issue: 2
Publish Year: 1396
Type: Journal paper
Language: English
View: 255
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_MJEE-11-2_001
Index date: 6 March 2023
A high-gain, low-noise 3.1–10.6 GHz ultra-wideband LNA in a 0.18μm CMOS abstract
An ultra-wideband (UWB) common gate-common source (CG-CS) low-noise amplifier (LNA) in a 0.18μm CMOS technology is presented in this paper. To obtain a high and flat power gain with low noise and good input impedance matching in the entire 3.1–10.6 GHz UWB band among low power consumption, a capacitive cross-coupling fully differential amplifier with the current-reuse technique is proposed. The current–reuse technique is used to achieve a wideband and reduce power consumption. The capacitor cross coupling technique is used to gm-boosting and hence to improve the NF of the amplifier. Therefore, the dependency between noise figure (NF) and input impedance matching is reduced. The proposed CG-CS amplifier has a fairly low NF compared with the other previous works in similar technology. In addition, a good power gain over all bandwidth and a high isolation with good input/output impedance matching are achieved. The minimum NF is 1.8 dB, the maximum power gain is 14.2 dB, the inverse gain is <-50 dB, the input and output matching S11 and S22 are <-10.3 dB and <-11.3 dB, respectively. Moreover, the input third-order intercept point (IIP3) is -5 dBm with core power consumption of 10.1 mW and supply voltage of 1.8 V.
A high-gain, low-noise 3.1–10.6 GHz ultra-wideband LNA in a 0.18μm CMOS Keywords:
A high-gain, low-noise 3.1–10.6 GHz ultra-wideband LNA in a 0.18μm CMOS authors
Hamid Nooralizadeh
Islamshahr Branch, Islamic Azad University
Behnam Babazadeh Daryan
Electrical Engineering Department, Islamshahr Branch, Islamic Azad University, Islamshahr, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :