Action graph of a semigroup act & its functorial connection

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 145

This Paper With 24 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CGASAT-18-1_003

تاریخ نمایه سازی: 28 فروردین 1402

Abstract:

In this paper we define C-induced action graph G(S,a,C;A) corresponding to a semigroup act (S,a,A) and a subset C of S. This generalizes many interesting graphs including Cayley Graph of groups and semigroups, Transformation Graphs (TRAG), Group Action Graphs (GAG), Derangement Action Graphs, Directed Power Graphs of Semigroups etc. We focus on the case when C = S and name the digraph, so obtained, as Action Graph of a Semigroup Act (S, a, A). Some basic structural properties of this graph follow from algebraic properties of the underlying semigroup and its action on the set. Action graph of a strongly faithful act is also studied and graph theoretic characterization of a strongly faithful semigroup act as well as that of idempotents in a semigroup are obtained. We introduce the notion of strongly transitive digraphs and based on this we characterize action graphs of semigroup acts in the class of simple digraphs. The simple fact that morphism between semigroup acts leads to digraph homomorphism between corresponding action graphs, motivates us to represent action graph construction as a functor from the category of semigroup acts to the category of certain digraphs. We capture its functorial properties, some of which signify previous results in terms of Category Theory.

Authors

Promit Mukherjee

Mathematics, Faculty of Science, Jadavpur University, Kolkata-۷۰۰۰۳۲ India

Rajlaxmi Mukherjee

Department of Mathematics, Garhbeta College, Paschim Medinipur-۷۲۱۱۲۷, India

Sujit Sardar

Mathematics, Faculty of Science, Jadavpur University, Kolkata-۷۰۰۰۳۲, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Adamek, J., Herrlich, H., and Strecker, G.E., “Abstract and Concrete ...
  • Annexstein, F., Baumslag, M., and Rosenberg, A.L., Group action graphs ...
  • Bang-Jensen, J. and Huang, J., Quasi-transitive digraphs, J. Graph Theory ...
  • Biggs, N.L., “Algebraic Graph Theory”, Cambridge University Press, ۱۹۹۶ ...
  • Chakrabarty, I., Ghosh, S., and Sen, M.K., Undirected power graphs ...
  • Cormen et al., “Introduction to Algorithms”, Third Edition, The MIT ...
  • Dénes, J., Connections between transformation semigroups and graphs, Theory of ...
  • Dénes, J., Some combinatorial properties of transformations and their connections ...
  • Delfan, A., Rasouli, H., and Tehranian, A., On the inclusion ...
  • Delfan, A., Rasouli, H., and Tehranian, A., Intersection graphs associated ...
  • East, J., Gadouleau, M., and Mitchell, J.D., Structural aspects of ...
  • Estaji, A.A., Haghdadi, T., and Estaji, A.As., Zero divisor graphs ...
  • Fan, S. and Zeng, Y., On Cayley graphs of bands, ...
  • Fedorova, M., Faithful group actions and Schreier graphs, Carpathian Math. ...
  • Godsil, G. and Royle, G., “Algebraic Graph Theory”, Springer, ۲۰۰۱ ...
  • Howie, J.M., “Fundamentals of Semigroup Theory”, Clarendon Press, ۱۹۹۵ ...
  • Iradmusa, M.N. and Praeger, C.E., Derangement action digraphs and graphs, ...
  • Kelarev, A.V. and Praeger, C.E., On transitive Cayley graphs of ...
  • Kelarev, A.V. and Quinn, S.J., Directed graphs and combinatorial properties ...
  • Khosravi, B. and Khosravi, B., A characterization of Cayley graphs ...
  • Kilp, M., Knauer, U., and Mikhalev, A., “Monoids, Acts and ...
  • Knauer, U. and Knauer, K., “Algebraic Graph Theory”, De Gruyter ...
  • Knauer, U., Wang, Y., and Zhang, X., Functorial properties of ...
  • Mac Lane, S., “Categories for the Working Mathematicians”, ۲nd Edition, ...
  • Malnič, A., Action graphs and coverings, Discrete Math. ۲۴۴ (۲۰۰۲), ...
  • Panma, S., Knauer, U., and Arworn, Sr., On transitive Cayley ...
  • West, D.B., “Introduction to Graph Theory”, Prentice Hall, ۲۰۰۱ ...
  • Zelinka, B., Graphs of semigroups, Časopis pro p̌estovánímatematiky ۱۰۶(۴) (۱۹۸۱), ۴۰۷-۴۰۸ ...
  • نمایش کامل مراجع