Road Detection with Deep Learning in Satellite Images
Publish place: Telecommunication devices، Vol: 12، Issue: 1
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 198
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TDMA-12-1_006
تاریخ نمایه سازی: 28 فروردین 1402
Abstract:
Road detection from high-resolution satellite images using deep learning is proposed in this article. The VGG۱۹ architecture, which is one of the deep convolutional neural network architectures, is used in the proposed method. To detect the road, two steps are implemented. To achieve high accuracy, image segmentation is done in the first step. At this stage, based on the semantic division, the objects whose area is small are removed. In the second stage, edge detection of images combines two techniques of segmentation and edge detection to improve road detection. Considering the good accuracy of the VGG۱۹ architecture and the need for few parameters, the obtained results are favorable. To check the performance of the proposed method, the IoU criterion was used. The values obtained for this criterion show an improvement of more than ۸۰%. While this criterion is less than ۸۰% for the compared methods. The obtained results can be used for the purposes of digital mapping, transportation management and many other applications.
Keywords:
Authors
Zohreh Dorrani
Department of Electrical Engineering, Payame Noor University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :