Buckling Analysis of Functionally Graded Sandwich Beam Based on Third-Order Zigzag Theory
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 140
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MACS-10-1_007
تاریخ نمایه سازی: 9 اردیبهشت 1402
Abstract:
In this paper buckling response of a sandwich (SW) beam containing functionally graded skins and metal (Type-S) or ceramic core (Type-H) is investigated using a third-order zigzag theory. The variation of material properties in functionally graded (FG) layers is quantified through exponential and power laws. The displacements are assumed using higher-order terms along with the zigzag factors to evaluate the effect of shear deformation. In-plane loads are considered. The governing equations are derived using the principle of virtual work. The model achieves stress-free boundaries unlike higher-order shear deformation theories and is C۰ continuous so, does not require any post-processing method. The present model shows an accurate variation of transverse stresses in thickness direction due to the inclusion zigzag factor in assumed displacements and is independent of the number of layers in computing the results. Numerical solutions are arrived at by using three noded finite elements with ۷DOF/node for sandwich beams. The novelty of the paper lies in presenting a zig-zag buckling analysis for the FGSW beam with thickness stretching. This paper presents the effects of the power law factor, end conditions, aspect ratio, and lamination schemes on the buckling response of FGM sandwich beams. The numerical results are found to be in accordance with the existing results. The buckling strength was improved by increasing the power law factor for Type S beams while the opposite behavior was seen in type H beams for all types of end conditions. The end conditions played a major role in deciding the buckling response of FGSW beams. Exponential law governed FGSW beam exhibited a little higher buckling resistance for Type S beams, while a little lower buckling resistance was found for Type S beams for almost all lamination schemes and end conditions. Some new results are also presented which will serve as a benchmark for future research in a parallel direction.
Keywords:
Authors
simmi gupta
Department of Civil Engineering, National Institute of Technology, Kurukshetra, ۱۳۶۱۱۹, India
H Chalak
Department of Civil Engineering, National Institute of Technology, Kurukshetra, ۱۳۶۱۱۹, India
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :