A Robust Renewable Energy Source-oriented Strategy for Smart Charging of Plug-in Electric Vehicles Considering Diverse Uncertainty Resources
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 136
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-36-4_010
تاریخ نمایه سازی: 17 اردیبهشت 1402
Abstract:
Nowadays, the notion of plug-in electric vehicle (PEV) as a valuable tool of energy management has been extensively employed in smart distribution grids. The main advantage of clean energy as well as elastic behaviour of operation in both electrical load/generation modes can sufficiently justify the utilization of such emerging technology. Moreover, the specific capability of renewable energy sources (RESs) in terms of contribution in PEV smart charging/discharging scheme would cause to remarkable techno-economic benefits in smart grids. However, the load demand, RES generation and also the electrical energy price encounter with uncertainty in practice required to be properly handled. Hence, a non-deterministic optimization model based on information gap decision theory (IGDT) is proposed in this paper to specify a robust PEV smart charging pattern. To solve the multi-objective proposed IGDT-based PEV smart charging (IGDT-PSC) model, the multi-objective version of particle swarm optimization (MOPSO) is utilized to define a set of Pareto optimal solutions. Furthermore, the final solution among the Pareto solutions is selected by means of a linear fuzzy satisfaction rule. The simulation results for a test smart microgrid comprising a PEV, a set of RES units and a load demand verify the effectiveness of the proposed IGDT-PSC model.
Keywords:
Authors
M. Ahmadigorji
Department of Electrical Engineering, Nour Branch, Islamic Azad University, Nour, Iran
M. Mehrasa
Univ. Grenoble Alpes, CNRS, Grenoble INP, G۲ELAB, ۳۸۰۰۰ Grenoble, France
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :