Deep learning-based intrusion detection systems: A comprehensive survey of four main fields of cyber security

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 219

This Paper With 36 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_KJMMRC-12-2_020

تاریخ نمایه سازی: 10 خرداد 1402

Abstract:

The security flaws in cyber security have always put the users and organizations at risk, which as a result created catastrophic conditions in the network that could be either irreversible or sometimes too costly to recover. In order to detect these attacks, Intrusion Detection Systems (IDSs) were born to alert the network in case of any intrusions. Machine Learning (ML) and more prominently deep learning methods can be able to improve the performance of IDSs. This article focuses on IDS approaches whose functionalities rely on deep learning models to deal with the security issue in Internet of Things (IoT), wireless networks, Software Defined Networks (SDNs), and Industrial Control Systems (ICSs). To this, we examine each approach and provide a comprehensive comparison and discuss the main features and evaluation methods as well as IDS techniques that are applied along with deep learning models. Finally, we will provide a conclusion of what future studies are possibly going to focus on in regards to IDS, particularly when using deep learning models.

Keywords:

Intrusion Detection System (IDS) , Deep Learning , Internet of Things (IoT) , Software Defined Network (SDN) , Industrial Control System (ICS)

Authors

Rasoul Jafari Gohari

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

Laya Aliahmadipour

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

Marjan Kuchaki Rafsanjani

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • J. Jang-Jaccard, S. Nepal, A Survey of Emerging Threats in ...
  • K. S. Vanitha, S. V. UMA, S. K. Mahidhar, Distributed ...
  • P. G. Govind, M. Kulariya, A Framework for Fast and ...
  • S. Jin, J. -G. Chung, Y. Xu, Signature-Based Intrusion Detection ...
  • N. T. Van, T. N. Thinh, L. T. Sach, An ...
  • M. Hoque, M. Mukit, A. Bikas, An Implementation of Intrusion ...
  • S. Mohammadi, H. Mirvaziri, M. G. Ahsaee, H. Karimipour, Cyber ...
  • M. Usama et al., Unsupervised Machine Learning for Networking: Techniques, ...
  • H. Liao, C. Lin, Y. Lin, K. Tung, Intrusion Detection ...
  • A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, Survey of ...
  • M. A. Ferrag, L. Maglaras, S. Moschoyiannis, H. Janicke, Deep ...
  • A. Aldweesh, A. Derhab, A. Z. Emam, Deep Learning Approaches ...
  • A. M. Aleesa, B. B. Zaidan, A. A. Zaidan, N. ...
  • G.E. Hinton, Deep Belief Networks, Scholarpedia, ۴, (۲۰۰۹), ۵۹۴۷ ...
  • N. M. Rezk, M. Purnaprajna, T. Nordstrom, Z. Ul-Abdin, Recurrent ...
  • L. Gonog and Y. Zhou, A Review: Generative Adversarial Networks, ...
  • R. Vinayakumar, K. P. Soman, P. Poornachandran, Applying Convolutional Neural ...
  • S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Computation, ۹, ...
  • H. Ma, Pattern Recognition Using Boltzmann Machine, Proceedings IEEE Southeastcon ...
  • O. Kaynar, A. G. Yuksek, Y. Gormez and Y. E. ...
  • https://www.unb.ca/cic/datasets/nsl.html[۲۲] https://kdd.ics.uci.edu/databases/kddcup۹۹/task.html[۲۳] https://www.unb.ca/cic/datasets/ddos-۲۰۱۹.html: :text=۲.,%۲Dworld%۲۰data%۲۰(PCAPs) ...
  • N. Moustafa, J. Slay, UNSW-NB۱۵: A Comprehensive Data Set for ...
  • https://www.unb.ca/cic/datasets/ids-۲۰۱۷.html[۲۶] https://www.stratosphereips.org/datasets-iot۲۳:text=IoT%۲D۲۳%۲۰is%۲۰a%۲۰new,of%۲۰Things%۲۰(IoT)%۲۰devices.&text=Its%۲۰goal%۲۰is%۲۰to%۲۰o er,funded%۲۰by%۲۰Avast%۲۰Software%۲C%۲۰Prague ...
  • https://archive.ics.uci.edu/ml/datasets/detection of IoT botnet attacks N Bait[۲۸] https://ieee-dataport.org/documents/bot-iot-dataset[۲۹] https://ieeexplore.ieee.org/document/۹۱۸۷۸۵۸[۳۰] https://www.unb.ca/cic/datasets/ddos-۲۰۱۹.html: ...
  • B. Riyaz, S. Ganapathy, A Deep Learning Approach for E ...
  • S. M. Kasongo, Y. Sun, A Deep Long Short-Term Memory ...
  • V. Gowdhaman, R. Dhanapal, An Intrusion Detection System for Wireless ...
  • Q. Duan, X. Wei, J. Fan, L. Yu, Y. Hu, ...
  • O. Sbai, M. El-boukhari, Data Flooding Intrusion Detection System for ...
  • S. Dilipkumar, M. Durairaj, Epilson Swarm Optimized Cluster Gradient and ...
  • S. Huang, K. Lei, IGAN-IDS: An Imbalanced Generative Adversarial Network ...
  • M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, Y. ...
  • H. Yang, F. Wang, Wireless Network Intrusion Detection Based on ...
  • D. Neema, G. Raina, K. P. Jagannathan, A Framework for ...
  • S. M. Kasongo, Y. Sun, A Deep Learning Method with ...
  • J. Zhang, F. Li, H. Zhang, R. Li, Y. Li, ...
  • M. Aloqaily, S. Otoum, I. A. Ridhawi, Y. Jararweh, An ...
  • M. P. Novaes, L. F. Carvalho, J. Lloret, M. L. ...
  • M. Abdallah, N. A. L. Khac, H. Jahromi, A. D. ...
  • M. S. ElSayed, N. Le-Khac, M. A. Albahar, A. Jurcut, ...
  • T. A. Tang. L. Mhamdi, D. McLernon, S. A. R. ...
  • T. -H. Lee, L. -H. Chang, C. -W. Syu, Deep ...
  • A. Makuvaza, D. S. Jat, A. M. Gamundani, Deep Neural ...
  • T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. ...
  • C. Li, Y. Wu, X. Yuan, et al., Detection and ...
  • J. Malik, A. Akhunzada, I. Bibi, M. Imran, A. Musaddiq, ...
  • B. Susilo and R. F. Sari, Intrusion Detection in Software ...
  • S. BOUKRIA and M. GUERROUMI, Intrusion detection system for SDN ...
  • L. H. Albahar, M. Al, Recurrent Neural Network Model Based ...
  • P. Choobdar, M. Naderan, M. Naderan, Detection and Multi-Class Classi ...
  • B. Roy, H. Cheung, A Deep Learning Approach for Intrusion ...
  • V. Dutta, M. Choras, M. Pawlicki, R. Kozik, A Deep ...
  • X. Kan, Y. Fan, Z. Fang, L. Cao, N. N. ...
  • A. Telikani, A. H. Gandomi, Cost-sensitive stacked auto-encoders for intrusion ...
  • M. Almiani, A. AbuGhazleh, A. A.-Rahayfeh, S. Atiewi, A. Razaque, ...
  • A. Nagisetty , G. P. Gupta, Framework for Detection of ...
  • A. Ferdowsi and W. Saad, Generative Adversarial Networks for Distributed ...
  • Y. Zhang, P. Li and X. Wang, Intrusion Detection for ...
  • A. Elsaeidy, K. S. Munasinghe, D. Sharma, A. Jamalipour, Intrusion ...
  • X.Wang, A. Derhab, A, E. Aldweesh, A. Z. Khan, F. ...
  • R. Gassais, N. E.-Jivan, J.M. Fernandez, et al., Multi-level host-based ...
  • Y. Meidan et al., N-BaIoT|Network-Based Detection of IoT Botnet Attacks ...
  • Y. Li, Y. Xu, Z. Liu, H. Hou, Y. Zheng, ...
  • W. Wang, J. Guo, Z. Wang, H. Wang, J. Cheng, ...
  • S. Huda, S. Miah, J. Yearwood, S. Alyahya, H. Al-Dossari, ...
  • M. Lan, J. Luo, S. Chai, R. Chai, C. Zhang, ...
  • J. Liu, L. Yin, Y. Hu, S. Lv, L. Sun, ...
  • S. K. Alabugin, A. N. Sokolov, Applying of Generative Adversarial ...
  • S. Han, M. Xie, H. -H. Chen, Y. Ling, Intrusion ...
  • B. Li, Y. Wu, J. Song, R. Lu, T. Li, ...
  • H. Yang, L. Cheng, M. C. Chuah, Deep-Learning-Based Network Intrusion ...
  • A.A. Suzen, Developing a Multi-level Intrusion Detection System Using Hybrid-DBN. ...
  • C. Galdi, A. Chu, Y. Lai, J. Liu, Industrial Control ...
  • F. Xingjie, W. Guogenp, Z. ShiBIN, ChenHAO, Industrial Control System ...
  • Y. Li, Y. Li, S. Zhang. Intrusion Detection Algorithm Based ...
  • G. B. Huang, Q. Y. Zhu, C. K. Siew, Extreme ...
  • C.-H. Chen, C. Wang, B. Wang, Y. Sun, Y. Wei, ...
  • A. N. Sokolov, S. K. Alabugin, I. A. Pyatnitsky, Trac ...
  • J. Shu, L. Zhou, W. Zhang, X. Du, M. Guizani, ...
  • D. Li, L. Deng, M. Lee, H. Wang, IoT Data ...
  • D. Javeed, T. Gao, M. T. Khan, SDN-Enabled Hybrid DL-Driven ...
  • M. Arif, I. Ullah, B. A. Raza, A. Sikandar, A. ...
  • M. Al-Hawawreh, E. Sitnikova, F. Hartog, An Ecient Intrusion Detection ...
  • L. Nie, Z. Ning, X. Wang, X. Hu, J. Cheng, ...
  • S. Latif, Z. Idrees, Z. Zou, J. Ahmad, DRaNN: A ...
  • M. Al-Hawawreh, E. Sitnikova. Industrial Internet of Things Based Ransomware ...
  • نمایش کامل مراجع