Deep learning-based intrusion detection systems: A comprehensive survey of four main fields of cyber security
Publish place: Journal of Mahani Mathematical Research، Vol: 12، Issue: 2
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 219
This Paper With 36 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_KJMMRC-12-2_020
تاریخ نمایه سازی: 10 خرداد 1402
Abstract:
The security flaws in cyber security have always put the users and organizations at risk, which as a result created catastrophic conditions in the network that could be either irreversible or sometimes too costly to recover. In order to detect these attacks, Intrusion Detection Systems (IDSs) were born to alert the network in case of any intrusions. Machine Learning (ML) and more prominently deep learning methods can be able to improve the performance of IDSs. This article focuses on IDS approaches whose functionalities rely on deep learning models to deal with the security issue in Internet of Things (IoT), wireless networks, Software Defined Networks (SDNs), and Industrial Control Systems (ICSs). To this, we examine each approach and provide a comprehensive comparison and discuss the main features and evaluation methods as well as IDS techniques that are applied along with deep learning models. Finally, we will provide a conclusion of what future studies are possibly going to focus on in regards to IDS, particularly when using deep learning models.
Keywords:
Intrusion Detection System (IDS) , Deep Learning , Internet of Things (IoT) , Software Defined Network (SDN) , Industrial Control System (ICS)
Authors
Rasoul Jafari Gohari
Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran
Laya Aliahmadipour
Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran
Marjan Kuchaki Rafsanjani
Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :