ارایه یک رویکرد تشخیص بیماران کووید ۱۹ با یادگیری ماشین و الگوریتمبهینه سازی عروس دریایی
Publish Year: 1401
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 300
This Paper With 23 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CEITCONF06_049
تاریخ نمایه سازی: 26 خرداد 1402
Abstract:
بیماری کووید ۱۹، یک بیماری کشنده تنفسی و واگیردار است و سالانه میلیون ها نفر را به کام مرگ می برد. مسئله اصلی برای مهار بیماری کووید ۱۹، طبقه بندی افراد بیمار از افراد سالم است. برای تشخیص بیماران از افراد سالم تاکنون چند روش مختلف ارایه شده است که بیشتر آن ها بر اساس پردازش تصویر سیتی اسکن بوده است. در این روش ها برای آنکه تشخیص داده شود فرد سالم یا بیمار است، تصاویر سیتی اسکن بیماران مورد بررسی قرار گرفته میشود. برای تجزیه و تحلیل تصاویر سیتی اسکن بیماران یا افراد سالم معمولا از روش های یادگیری عمیق استفاده می شود. در این مورد فرض بر آن است که ویروس کرونا، روی بافت های ریه فرد اثر گذاشته و به آن آسیب وارد کرده است. چالش اصلی این دسته از مطالعات آن است که فرض بر آن است که بیماری کووید ۱۹ روی ریه های فرد اثر گذاشته و اثر آن در تصاویر سیتی اسکن مشخص شده است. مطالعات نشان می دهد که در بسیاری از موارد فرد مبتلا به بیماری کووید ۱۹ است اما دارای ریه های سالمی است لذا نیاز به توسعه روش های است که بر اساس سایر اطلاعات بالینی، بیماران و افراد سالم را طبقه بندی نماید. در این مقاله، برای طبقه بندی افراد سالم و بیمار از یک مکانیزم طبقه بندی مبتنی بر شبکه عصبی چند لایه در ترکیب با الگوریتم عروس دریایی استفاده شده است. در روش پیشنهادی نقش الگوریتم عروس دریایی بهینه سازی پارامترهای شبکه عصبی و انتخاب ویژگی است. آزمایشات نشان داد روش پیشنهادی برای تشخیص بیماران کووید ۱۹ می تواند به دقت، صحت و حساسیتی به ترتیب برابر ۹۷.۴۴٪،۹۷.۴۱٪،۹۷.۱۹٪دست پیدا نماید. روش پیشنهادی در تشخیص بیماران کرونایی از روش های یادگیری نظیر ANN، CNN، CNNLSTM، CNNRNN، LSTM، RNN عملکرد بهتری دارد
Keywords:
Authors
ناهید طیب نیا
کارشناسی ارشد، بیوانفورماتیک، موسسه آموزش عالی نبی اکرم (ص)
عوض نقی پور
استادیار تمام وقت گروه مهندسی کامپیوتر، موسسه آموزش عالی نبی اکرم (ص)،