Sensitivity Laplacian Ratio‑Based Optimization of the Projection Selection for Diffuse Optical Tomography

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 99

This Paper With 6 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMSI-10-2_007

تاریخ نمایه سازی: 28 تیر 1402

Abstract:

Background: In diffuse optical tomography, determining the optimal angle between the source and detector is an effective method to reduce the number of projections while maintaining the quality of the reconstructed images. In this study, a new parameter is introduced to evaluate the source‑detector geometries. Methods: A two‑dimensional mesh with the radius of ۲۰ mm and ۷۹۸۷ nodes were built. In each reconstruction, ۰.۵ mm heterogeneity with the absorption coefficient of ۰.۰۶ mm−۱ and the dispersion coefficient of ۰.۶ mm−۱ was added in different parts of the sample randomly. The relationship between the mean square error (MSE), sensitivity Laplacian ratio (SLR), and sensitivity standard deviation ratio (SSR) was evaluated based on their correlation coefficients. The quality of the images achieved using the optimized projections were compared with that of the full projections for the same depths. Results: MSE decreases by increasing the SLR magnitudes which indicate that the parameter could be used to evaluate the scanning geometries. There was a negative correlation coefficient (R = −۰.۷۶) with the inverse relationship between the SLR and MSE indices. SSR does not have a significant relationship with the quality of the reconstructed images. For each scanning depth, the comparison of the images obtained using the full and optimized‑selective projections did not show any considerable difference despite the decrease of the projection numbers in scanning geometry with the optimized‑selective projections. Conclusion: The unnecessary projections could be eliminated by placing the detectors at the specific angles, which were determined using the SLR. Thus, a proper compromise between the quality of the reconstructed images and reconstruction time might establish.

Authors

Anita Ebrahimpour

Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran

Seyed Salman Zakariaee

Department of Medical Physics, Faculty of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran

Marjaneh Hejazi

Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran