Feature Extraction from Several Angular Faces Using a Deep Learning Based Fusion Technique for Face Recognition
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 129
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-36-8_014
تاریخ نمایه سازی: 10 مرداد 1402
Abstract:
Due to its non-interfering nature, face recognition has been the most suitable technology for designing biometric systems in recent years. This technology is used in various industries, such as health care, education, security, and surveillance. Facial recognition technology works best when a person is looking straight into the camera. On the contrary, the performance of facial recognition degrades when encountered with an angled facial image, because they are generally trained using images of a full face. The purpose of this paper is to estimate the feature vector of a full face image when there are several angular facial images of the same person, one example being angular faces in a video. This method extracts the basic features of a facial image using the non-negative matrix factorization (NMF) method. Then, the feature vectors are fused using a generative adversarial network (GAN) to estimate the feature vector associated with the frontal image. The experimental results on the angular images of the FERET dataset show that the proposed method can significantly improve the accuracy of facial recognition technology methods.
Keywords:
Feature Extraction , Angled face recognition , Fusion of feature vectors , Generative Adversarial Neural Networks
Authors
E. Charoqdouz
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
H. Hassanpour
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :