Land Covers Classification from LiDAR-DSM Data Based on Local Kernel Matrix Features of Morphological Profiles

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 175

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-36-9_004

تاریخ نمایه سازی: 13 مرداد 1402

Abstract:

Accurate land cover classification from the digital surface model (DSM) obtained from LiDAR sensors is a challenging topic that researchers have considered in recent years. In general, the classification accuracy of land covers leads to low accuracy using a single-band DSM image. Hence, it seems necessary to develop efficient methods to extract relevant spatial information, which improves classification accuracy. In this regard, using spatial features based on morphological profiles (MPs) has significantly increased classification accuracy. Despite MPs' efficiency in increasing the DSM's classification accuracy, the classification accuracy results under the situation of limited training samples are not still at satisfactory levels. The main novelty of this paper is to propose a new feature space based on local kernel descriptors obtained from MP for addressing the mentioned challenge of MP-based DSM classification. These innovative feature vectors consider local nonlinear dependencies and higher-order statistics between the morphological features. The experiments of this study are conducted on two well-known DSM datasets of Houston and Trento. Our results show that support vector machine (SVM)-based DSM classification with the new local kernel features achieved an average accuracy of ۹۳.۷۵%, which is much better than conventional SVM classification with single-band DSM and MP features (by about ۵۷% and ۱۱.۵% on average, respectively). Additionally, our proposed method outperformed two other DSM classification methods by an average of ۴.۷%.

Authors

B. Asghari Beirami

Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran, Iran

M. Mokhtarzade

Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Sharma, M., Garg, R.D., Badenko, V., Fedotov, A., Min, L. ...
  • Wang, A., Wang, M., Jiang, K., Zhao, L. and Iwahori, ...
  • Asghari Beirami, B. and Mokhtarzade, M., "Ensemble of log-euclidean kernel ...
  • Zhang, J., Wang, L., Zhou, L. and Li, W., "Beyond ...
  • Asghari Beirami, B. and Mokhtarzade, M., "Spatial-spectral classification of hyperspectral ...
  • نمایش کامل مراجع