Improvement of small scale mine blast operation: A comparative application of hunter-point artificial neural network, support vector machine, and regression analysis models
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 201
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMGE-57-2_010
تاریخ نمایه سازی: 14 مرداد 1402
Abstract:
The blasting operation is one of the technologies used for breaking rock masses and reducing the rock mass into smaller sizes to improve transportation and further particle separation. The improvement of blast fragmentation supports the maximization of mining operation and productivity. Soft computing and regression model has been developed in this study to optimize small-scale dolomite blast operations in Akoko Edo, Nigeria. WipFrag software was used to analyze the results of ۳۵ blasting rounds. As independent variables, one uncontrollable parameter and five controllable blast parameters were chosen to predict blast particle sizes using four mathematically motivated soft computing model approaches. The prediction accuracy of the developed models was tested using various model performance indices. The study revealed that rock strength influences blast fragmentation results, and based on the rock strength properties, the fragmentation block size increases with an increase in rock strength. The results of the model performance indices used for the evaluation of the proposed models showed that the modified Artificial Neural Network (ANN) called Hunter Point (HP-ANN) has the highest predictive accuracy. A new model evaluator was also developed in this study called the decision factor. Its application indicates that the HP-ANN model is the best model suitable for the prediction of blast fragment size distribution. Therefore, the developed models can be used to predict the blast result mean size (X۵۰) and the ۸۰% percentage passing size (X۸۰) for mining engineering blasting practices.
Keywords:
Authors
Blessing Taiwo
Federal University of Technology Akure, Mining Engineering, Nigeria.
Abduljeleel Ajibona
Federal University of Technology Akure, Mining Engineering, Nigeria.
Kayode Idowu
University of Jos, Mining Engineering, Nigeria.
Abdulkadir Babatunde
School Mines, China University of Mining and Technology, Xuzhou China.
Bidemi Ogunyemi
Federal University of Technology Akure, Mining Engineering, Nigeria.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :