New subclasses of Ozaka's convex functions
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 127
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-14-3_016
تاریخ نمایه سازی: 26 مرداد 1402
Abstract:
Let \mathcal{S}^{\ast}_{L}(\uplambda) and \mathcal{CV}_L(\uplambda) be the classes of functionsf, analytic in the unit disc \Updelta=\{z\colon|z|<۱\}, with thenormalization f(۰)=f'(۰)-۱=۰, which satisfies the conditions\begin{equation*}\frac{zf'(z)}{f(z)}\prec \left(۱+z\right)^{\uplambda}\quad\text{and}\quad \left(۱+\frac{zf''(z)}{f'(z)}\right)\prec \left(۱+z\right)^{\uplambda}\qquad \left(۰<\uplambda\le ۱ \right),\end{equation*}where \prec is the subordination relation, respectively. The classes\mathcal{S}^{\ast}_{L}(\uplambda) and \mathcal{CV}_L(\uplambda) are subfamilies of the known classes of strongly starlike and convex functions of order \uplambda. We consider the relations between \mathcal{S}^{\ast}_{L}(\uplambda), \mathcal{CV}_L(\uplambda) and other classes geometrically defined. Also, we obtain the sharp radius of convexity for functions belonging to \mathcal{S}^{\ast}_{L}(\uplambda) class. Furthermore, the norm of pre-Schwarzian derivatives and univalency of functions f which satisfy the condition\begin{equation*}\Re\left\{۱+\frac{zf''(z)}{f'(z)}\right\}<۱+\frac{\uplambda}{۲}\qquad\myp{z \in \Updelta}, \end{equation*}are considered.
Keywords:
Univalent functions , subordination , strongly starlike functions , Domain bounded by Sinusoidal spiral
Authors
Mohammad Ali Abolfathi
Department of Mathematics, Faculty of Sciences, Urmia University, P. O. Box ۱۶۵, Urmia, Iran