Three-Dimensional Optimization of Blade Lean and Sweep for an Axial Compressor to Improve the Engine Performance
Publish place: Journal of Applied Fluid Mechanics، Vol: 16، Issue: 11
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 141
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JAFM-16-11_009
تاریخ نمایه سازی: 22 شهریور 1402
Abstract:
Nowadays, optimization methods have been considered as a practical tool to improve the performance of turbo-machines. For this purpose, the numerical study of the aerodynamic flow of the NASA Rotor-۶۷ axial compressor has been investigated, and the results of this three-dimensional simulation show good agreement with experimental data. Then, the blade stacking line is changed using lean and sweep for Rotor-۶۷ to improve the compressor performance. The third-order polynomial is selected to generate the lean and sweep changes from the hub to the shroud. The compressor flow field is solved by a Reynolds averaged Navier-Stokes solver. The genetic algorithm, coupled with the artificial neural networks, is implemented to find the optimum values for blade lean and sweep. Considering the three objective functions of pressure ratio, mass flow rate, and isentropic efficiency, the optimized rotor is obtained using the optimization algorithm. Two geometries are obtained using the optimization algorithm. The results of the optimized compressor include improving the isentropic efficiency, pressure ratio, and mass flow equal to ۰.۵۷%, ۰.۹۳%, and ۱.۸%, respectively. After compressor optimization, the effect of the changes in the compressor performance parameters is studied on a single spool turbojet engine. The engine is modeled by analyzing the Brayton thermodynamic cycle of the assumed turbojet engine under design point operating conditions. Results show that for the best test case, the engine with the optimized rotor, the thrust, and SFC are improved by ۱.۸۶% and ۰.۲۱%, respectively.
Keywords:
Authors
M. Heidarian Shahri
Amirkabir University of Technology, Tehran, Iran
A. Madadi
Amirkabir University of Technology, Tehran, Iran
M. Boroomand
Amirkabir University of Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :