Revolutionizing Covid-۱۹ Diagnosis: The Impact of Automated Chest X-ray Analysis through Deep Learning

Publish Year: 1402
نوع سند: مقاله کنفرانسی
زبان: English
View: 227

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ITCT20_096

تاریخ نمایه سازی: 5 مهر 1402

Abstract:

Using cutting-edge technology, this groundbreaking study developed a novel approach to diagnosing COVID-۱۹. By utilizing wavelet transformation and fuzzy logic, we have successfully removed noise from CT images, enabling us to accurately segment lung regions. Our innovative approach combines global and local threshold methods, resulting in unparalleled success in segmenting lung images. We have further employed state-of-the-art techniques such as AlexNet for feature extraction and Support Vector Machine (SVM) for classification, achieving an astonishing ۹۹.۸% accuracy in classifying COVID-۱۹, Viral Pneumonia, and Normal data. Our method outperforms previous approaches and represents a significant breakthrough in medical diagnosis.

Keywords:

Authors

Zahra Khodakaramimaghsoud

Computer Engineering, University of Isfahan, Isfahan, Iran

Sara yousefi Javan

Computer Engineering, Islamic Azad University of Mashhad, Mashhad, Iran