A Comparison of Several Nonparametric Fuzzy Regressions with Trapezoidal Data
Publish Year: 1400
Type: Journal paper
Language: English
View: 155
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JADSC-4-2_009
Index date: 7 October 2023
A Comparison of Several Nonparametric Fuzzy Regressions with Trapezoidal Data abstract
In this paper, three methods of nonparametric fuzzy regression with crisp input and asymmetric trapezoidal fuzzy output, are compared. It analyzes the three nonparametric techniques in statistics, namely local linear smoothing (L-L-S), K- nearest neighbor Smoothing (K-NN) and kernel smoothing (K-S) with trapezoidal fuzzy data to obtain the best smoothing parameters. In addition, it makes an analysis on three real-world datasets and calculates the goodness of fit to illustrate the application of the proposed method.In this paper, we propose to analyze the three nonparametric regression techniques in statistical regression, namely local linear smoothing (L-L-S), the K- nearest neighbor smoothing (K-NN) and the kernel smoothing techniques (K-S) with trapezoidal fuzzy data.This article is organized as follows: In section 2, we have some preliminaries about fuzzy nonparametric regression and trapezoidal fuzzy data. In section 3, smoothing methods for trapezoidal fuzzy numbers are proposed and in section 4, two numerical examples are solved.
A Comparison of Several Nonparametric Fuzzy Regressions with Trapezoidal Data Keywords:
A Comparison of Several Nonparametric Fuzzy Regressions with Trapezoidal Data authors
T. Razzaghnia
Department of Statistics, North Tehran Branch, Islamic Azad University, Tehran, Iran
S. Danesh
Young Researchers and Elite Club, East Tehran Branch, Islamic Azad university, Tehran, Iran.
A. Maleki
Department of Statistics, West tehran Branch, Islamic Azad University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :