Automatic Liver segmentation Using Vector Field Convolution and Artificial Neural Network in MRI Images

Publish Year: 1391
نوع سند: مقاله ژورنالی
زبان: English
View: 116

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MJEE-6-1_004

تاریخ نمایه سازی: 3 آبان 1402

Abstract:

Accurate liver segmentation on Magnetic Resonance Images (MRI) is a challenging task especially at sites where surrounding tissues such as spleen and kidney have densities similar to that of the liver and lesions reside at the liver edges. The first and essential step for computer aided diagnosis (CAD) is the automatic liver segmentation that is still an open problem. Extensive research has been performed for liver segmentation; however it is still challenging to distinguish which algorithm produces more precise segmentation results to various medical images. In this paper, we have presented a new automatic system for liver segmentation in abdominal MRI images. Our method extracts liver regions based on several successive steps. The preprocessing stage is applied for image enhancement such as edge preserved and noise reduction. The proposed algorithm for liver segmentation is a combined algorithm which utilizes a contour algorithm with a Vector Field Convolution (VFC) field as its external force and perceptron neural network. By convolving the edge map generated from the image with the user-defined vector field kernel, VFC is calculated. We use trained neural networks to extract some features from liver region. The extracted features are used to find initial point for starting VFC algorithm. This system was applied to a series of test images to extract liver region. Experimental results showed the promise of the proposed algorithm.

Keywords:

Authors

Hassan Masoumi

Department of engineering,Kazerun Branch, Islamic Azad University, Kazeron, Iran

Ahad Salimi

Department of engineering,Kazerun Branch, Islamic Azad University, Kazeron, Iran

Hamidreza Sadeghi Madavani

Department of engineering,Zarindasht Branch, Islamic Azad University, Zarindasht, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • P. Capadelli, E. Casiraghi, G. Lombardi, “Automatic liver segmentation from ...
  • C. Bartolozzi, C.D. Pina, D. Cioni, L. Croceti, E. Batini, ...
  • C. Platero, J.M. Ponacela, P. Gonzalez, M.C. Tobary, J. Sanguino, ...
  • V. Grau, A.U.J. Mewes, M. Alcaniz, R. Kikinis, S.K. Warfield, ...
  • G. Chen, L. Gu, L. Qian, J. Xu, “An improved ...
  • Z. Yuan, Y. Wang, J. Yang, Y. Liu, “A novel ...
  • S. Luo, Q. Hu, X. He, J. Li, J.S. Jin, ...
  • X. Zhang, J. Tian, K. Deng, Y. Wu, X. Li, ...
  • H. Badakhshannoory, P. Saeedi, “A model-based validation scheme for organ ...
  • H. Lamecker, T. Lange, M. Seebass, “Segmentation of the liver ...
  • L. Rusko, G. Bekes, M. Fidrich, “Automatic segmentation of the ...
  • A.H. Foruzan, R.A. Zoroofi, M. Hori, Y. Sato, “A knowledge-based ...
  • S.J. Lim, Y.Y. Jeong, Y.S. Ho, “Automatic liver segmentation for ...
  • L. Gao, D. Heath, B. Kuszyk, E. Fishman, “Automatic liver ...
  • F. Liu, B. Zhao, P. K. Kijewski, L. Wang, L. ...
  • K.T. Bae, M.L. Giger, C.T. Chen, C. E. Kahn, “Automatic ...
  • E.L. Chen, P.C. Chung, C.L. Chen, H. M. Tsai, C.I. ...
  • J. Lee, N. Kim, H. Lee, J.B. Seo, H.J. Won, ...
  • Y. Zhao, Y. Zan, X. Wang, G. Li, “Fuzzy C-means ...
  • M. Pham, R. Susomboon, T. Disney,D. Raicu, J. Furst, “A ...
  • S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and ...
  • N.H. Abdel-massieh, M.M. Hadhoud, K.A. Moustafa, “A fully automatic and ...
  • M. Kass, A.Witkin, D. Terzopolous, “Snake: Active contour models”, Int. ...
  • T. Chan, L.Vese, “Active contours without edges”, IEEE Trans. Image ...
  • G. Chen, L. GU, “A novel liver perfusion analysis based ...
  • H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, H. ...
  • G. Borgefors, “Hierarchical chamfer matching: A parametric edge matching algorithm”, ...
  • O. Gloger, J. Kühn, A. Stanski, H. Völzke, R. Puls, ...
  • I. Middleton, R. Damper, “Segmentation of magnetic resonance images using ...
  • Li, B. and Acton, S.T. “Active contour external force using ...
  • Martin T.Hagan, Howard B.Dcmuth, Mark Beale: Neural Network Design, ۲۰۰۲ ...
  • M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour ...
  • D. Yuan and S. Lu, “Simulated static electric field (SSEF) ...
  • نمایش کامل مراجع