Automatic Liver segmentation Using Vector Field Convolution and Artificial Neural Network in MRI Images
Publish place: majlesi Journal of Electrical Engineering، Vol: 6، Issue: 1
Publish Year: 1391
نوع سند: مقاله ژورنالی
زبان: English
View: 116
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MJEE-6-1_004
تاریخ نمایه سازی: 3 آبان 1402
Abstract:
Accurate liver segmentation on Magnetic Resonance Images (MRI) is a challenging task especially at sites where surrounding tissues such as spleen and kidney have densities similar to that of the liver and lesions reside at the liver edges. The first and essential step for computer aided diagnosis (CAD) is the automatic liver segmentation that is still an open problem. Extensive research has been performed for liver segmentation; however it is still challenging to distinguish which algorithm produces more precise segmentation results to various medical images. In this paper, we have presented a new automatic system for liver segmentation in abdominal MRI images. Our method extracts liver regions based on several successive steps. The preprocessing stage is applied for image enhancement such as edge preserved and noise reduction. The proposed algorithm for liver segmentation is a combined algorithm which utilizes a contour algorithm with a Vector Field Convolution (VFC) field as its external force and perceptron neural network. By convolving the edge map generated from the image with the user-defined vector field kernel, VFC is calculated. We use trained neural networks to extract some features from liver region. The extracted features are used to find initial point for starting VFC algorithm. This system was applied to a series of test images to extract liver region. Experimental results showed the promise of the proposed algorithm.
Keywords:
Authors
Hassan Masoumi
Department of engineering,Kazerun Branch, Islamic Azad University, Kazeron, Iran
Ahad Salimi
Department of engineering,Kazerun Branch, Islamic Azad University, Kazeron, Iran
Hamidreza Sadeghi Madavani
Department of engineering,Zarindasht Branch, Islamic Azad University, Zarindasht, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :