Two step size algorithms for strong convergence for a monotone operator in Banach spaces

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 88

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJNAA-14-10_019

تاریخ نمایه سازی: 14 آبان 1402

Abstract:

For p\geq ۲, let E be a ۲ uniformly smooth and p uniformly convex real Banach spaces and let a mapping \displaystyle \Phi : E \to E^{*} be Lipschitz, and  strongly monotone such that \displaystyle \Phi^{-۱}(۰)\neq \emptyset. For an arbitrary (\{\xi_{۱}\}, \{\psi_{۱}\})\in E, we define the sequences \{\xi_{n}\} and \{\psi_{n}\} by\begin{equation*}    \left\{      \begin{array}{ll}         \psi_{n+۱} = J^{-۱}(J\xi_{n} - \theta_{n}\Phi\xi_{n}), & \hbox{n\geq ۰} \\         \xi_{n+۱} = J^{-۱}(J\psi_{n+۱} - \lambda_{n}\Phi\psi_{n+۱}), & \hbox{n\geq ۰} \\      \end{array}    \right.\end{equation*}where \lambda_{n} and \theta_{n} are positive real number and J is the duality mapping of E. Letting (\lambda_{n}, \theta_{n})\in (۰,\Lambda_{p}) where \Lambda_{p} >۰, then \xi_{n}  and \psi_{n} converges strongly to \xi^{*},   a unique solution of the equation \Phi \xi = ۰.

Authors

John Mendy

Mathematics Department, University of The Gambia, Brikama Campus, Gambia

Furmose Mendy

Mathematics Department, University of The Gambia, Brikama Campus, Gambia

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Y. Alber, Metric and generalized projection operator in Banach space: ...
  • Y. Alber and S. Guerre-Delabiere, On the projection methods for ...
  • Y. Alber and T. Ryazantseva, Nonlinear Ill Posed Problems of ...
  • Y.B. El Yekheir, J.T. Mendy, T.M.M. Sow, and N. Djitte, ...
  • F.E. Browder, Nonlinear mappings of nonexpansive and accretive-type in Banach ...
  • C.E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly ...
  • C.E. Chidume, A. Adamu, and L.C. Okereke, A Krasnoselskii-type algorithm ...
  • C.E. Chidume, A.U. Bello, and B. Usman, Krasnoselskii-type algorithm for ...
  • C.E. Chidume and M.O. Osilike, Iterative solution of nonlinear integral ...
  • C.E. Chidume and M.O. Osilike, Iterative solutions of nonlinear accretive ...
  • S.Y. Cho, X. Qin, and L. Wang, Strong convergence of ...
  • I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear ...
  • N. Djitte, J.T. Mendy, and T.M.M. Sow, Computation of zeros ...
  • S. Kamimura and W. Takahashi, Strong convergence of proximal-type algorithm ...
  • S. Khorasani and A. Adibi, Analytical solution of linear ordinary ...
  • N. Lehdili and A. Moudafi, Combining the proximal algorithm and ...
  • B. Martinet, Regularisation d inequations variationnelles par approximations successives, Rech. ...
  • J.T. Mendy, M. Sene, and N. Djitte, Algorithm for zeros ...
  • J. Mendy and R. Shukla, Viscosity like implicit methods for ...
  • A. Moudifi, Viscosity approximation methods for fixed point problems, J. ...
  • T. Mustafa, Approximate analytical solution of the nonlinear system of ...
  • S. Reich, A weak convergence theorem for alternating methods with ...
  • S. Reich, Constructive techniques for accretive and monotone operators, Proc. ...
  • S. Reich and S. Sabach, Two strong convergence theorems for ...
  • R.T. Rockafellar, Monotone operators and the proximal point algorithm, Trans. ...
  • Y. Song and R. Chen, Strong convergence theorems on an ...
  • B.D. Stephen and H. Gareth, An inductive approximation to the ...
  • W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, ۲۰۰۰ ...
  • W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Its Applications, ...
  • W. Takahashi and Y. Ueda, On Reich’s strong convergence theorems ...
  • Y. Tang, Strong convergence of new algorithm for monotone operator ...
  • H. Zegeye and N. Shahzad, An algorithm for a common ...
  • نمایش کامل مراجع