Using Leaf Based Hyperspectral Models for Monitoring Biochemical Constituents and Plant Phenotyping in Maize

Publish Year: 1395
نوع سند: مقاله ژورنالی
زبان: English
View: 134

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JASTMO-18-6_023

تاریخ نمایه سازی: 1 آذر 1402

Abstract:

The aim of this study was to develop and validate qualitative and quantitative models to discriminate different types of maize and also estimate biochemical constituents. Spectral data were taken from the central leaf of randomly-chosen plants grown in field trials in ۲۰۱۱ and ۲۰۱۲. Leaf chlorophyll and protein content and stalk protein content were determined in the same plants. Four different Support Vector Machine (SVM) models were generated and validated in this study. In qualitative models, maize type was designated as dependent variable while Full Spectral (FS) data (۴۰۰-۱,۰۰۰ nm) and Spectral Indices (SI) data (۳۴ indices/bands) were independent variables. In the two quantitative models (SVMR-FS and SVMR-SI), independent variables were the same, whereas dependent variables were assigned as the quantitatively measured traits. Results showed the qualitative models to be a robust method of classification for distinguishing different maize types, such as High Oil Maize (HOM), High Protein Maize (HPM) and standard (NORMAL) maize genotypes. The SVMC-FS model was superior to SVMC-SI in terms of the genotypic classification of maize plants. Quantitative models with full spectral data gave more robust prediction than the others. The best prediction result (RMSEC= ۲۲۲.۴ µg g-۱, R۲ for Cal= ۰.۷۳۹, SEP= ۲۱۳.۳ µg g-۱; RPD= ۲.۰۴ and r= ۰.۸۷۷) was obtained from the SVMR-FS model developed for chlorophyll content. Indirect estimation models, based on relationships between leaf-based spectral measurements and leaf and stalk protein content, were less satisfactory.

Authors

F. Kahriman

Department of Field Crops, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.

K. Demirel

Agricultural Sensor and Remote Sensing Laboratory, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.

M. Inalpulat

Agricultural Sensor and Remote Sensing Laboratory, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.

C. O. Egesel

Department of Agricultural Biotechnology, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.

L. Genc

Agricultural Sensor and Remote Sensing Laboratory, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Abu-Kalaf, N. and Salman, M. ۲۰۱۴. Visible/Near Infrared (VIS/NIR) Spectroscopy ...
  • Abu-Kalaf, N. and Salman, M. ۲۰۱۴. Visible/Near Infrared (VIS/NIR) Spectroscopy ...
  • نمایش کامل مراجع