Ranking of companies in generating operating cash flows based on data envelopment analysis
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 110
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_RIEJ-12-4_002
تاریخ نمایه سازی: 24 آذر 1402
Abstract:
The purpose of this research is to evaluate and rank the efficiency of pharmaceutical companies in creating operational cash flows in line with the objectives of financial reporting. The research method for collecting theoretical bases and research data is library studies. In this research, in order to evaluate the efficiency of pharmaceutical companies in creating operational cash flow, the Data Envelopment Analysis (DEA) model with weight limit is used. The results of this research show that Farabi pharmaceutical company has the highest efficiency score in creating Operating Cash Flows (OCFs) and Loqman pharmaceutical company has the lowest efficiency score. The findings of this research confirm that DEA is a suitable technique for evaluating the performance of companies in creating operational cash flow. Also, this technique, along with traditional financial analysis, can be considered a useful instrument for deciding and evaluating the performance and efficiency of companies. This article can make analysts more familiar; financial and accounting researchers with DEA applications in financial and accounting analysis. Also, this research can expand the use of scientific models in financial and accounting research.
Keywords:
Authors
Leila Negahban
Department of Accounting, Karaj Branch, Islamic Azad University, Karaj, Iran.
Bahman Banimahd
Department of Accounting, Karaj Branch, Islamic Azad University, Karaj, Iran.
Seyed Hosseini
Department of Accounting, Karaj Branch, Islamic Azad University, Karaj, Iran.
Azam Shokri Cheshmeh Sabzi
Department of Accounting, Karaj Branch, Islamic Azad University, Karaj, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :