Prediction of Electrofacies Based on Flow Units Using NMR Data and SVM Method: a Case Study in Cheshmeh Khush Field, Southern Iran
Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 109
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JPSTR-7-3_006
تاریخ نمایه سازی: 29 آذر 1402
Abstract:
The classification of well-log responses into separate flow units for generating local permeability models is often used to predict the spatial distribution of permeability in heterogeneous reservoirs. The present research can be divided into two parts; first, the nuclear magnetic resonance (NMR) log parameters are employed for developing a relationship between relaxation time and reservoir porosity as well as introducing the concept of relaxation group. This concept is then used for the definition of electrofacies in the studied reservoir. A graph-based clustering method, known as multi resolution graph-based clustering (MRGC), was employed to classify and obtain the optimum number of electrofacies. The results show that the samples with similar NMR relaxation characteristics were classified as similar groups. In the second part of the study, the capabilities of nonlinear support vector machine as an intelligent model is employed to predict the electrofacies and permeability distribution in the entire interval of the reservoir, where the NMR log parameters are unavailable. SVM prediction results were compared with laboratory core measurements, and permeability was calculated from stoneley wave analysis to verify the performance of the model. The predicted results are in good agreement with the measured parameters, which proves that SVM is a reliable tool for the identification of electrofacies through the conventional well log data.
Keywords:
Authors
Mahdi Rastegarnia
Department of Petrophysics, Pars Petro Zagros Engineering & Services Company, Tehran, Iran
Mehdi Talebpour
Department of Petroleum Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
Ali Sanati
Faculty of Petrochemical and Petroleum Engineering, Hakim Sabzevari University, Sabzevar, Iran
seyed hassan hajiabadi
Faculty of Petrochemical and Petroleum Engineering, Hakim Sabzevari University, Sabzevar, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :