An Ensemble Deep Learning Model for the Detection and Classification of Breast Cancer

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 91

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MISJ-15-1_005

تاریخ نمایه سازی: 16 دی 1402

Abstract:

Background: Detecting breast cancer in its early stages remains a significant challenge in the present context and is a leading cause of death among women, primarily due to delayed identification. This paper presents a practical and accurate approach based on deep learning to identify breast cancer in cytology images.Method: The analytical approach leverages knowledge from a related problem through a technique known as transfer learning. Convolutional neural networks (CNNs) are employed due to their remarkable performance on large datasets. Image classification architectures such as Google network (GoogleNet), Visual geographical group network (VGGNet), residual network (ResNet), and dense convolution network (DenseNet) are utilized in this approach. By applying transfer learning, the images are classified into two categories: those containing cancer cells and those without them. The performance of the proposed ensemble method is evaluated using a breast cytology image dataset.Results: The results of our proposed ensemble framework outperform conventional CNN models in terms of precision, recall, and F۱ measures, achieving an impressive ۸۶% prediction accuracy. Visual representations of validation graphs for each classifier demonstrate that the ensemble framework surpasses the performance of pre-trained CNN architectures.Conclusion: Combining the outcomes of conventional CNN architectures into an ensemble framework enhances early breast cancer detection, leading to a reduction in mortality through timely medical interventions.

Authors

Joy Antony Sami

Department of Computer Science, School of Computing, SASTRA Deemed to be University, Thanjavur, India

Umamakeswari Arumugam

School of Computing, SASTRA Deemed to be University, Thanjavur, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • West D, West V. Model selection for a medical diagnostic ...
  • Barba D, León-Sosa A, Lugo P, Suquillo D, Torres F, ...
  • Wang F, Zhang S, Henderson LM. Adaptive decision-making of breast ...
  • Stomper PC, Gelman RS. Mammography in symptomatic and asymptomatic patients. ...
  • Sharma D, Kumar R, Jain A. Breast cancer prediction based ...
  • Mizzi D, Allely C, Zarb F, Kelly J, Hogg P, ...
  • Wilson JM, Colebaugh CA, Flowers KM, Overstreet D, Edwards RR, ...
  • Hessock M, Brewer T, Hutson S, Anderson J. Use of ...
  • Shaikh FJ, Rao DS. Prediction of cancer disease using machine ...
  • Sawssen B, Okba T. A novel machine learning approach for ...
  • Gopal VN, Al-Turjman F, Kumar R, Anand L, Rajesh M. ...
  • Naji MA, Filali SE, Aarika K, Benlahmar EH, Abdelouhahid RA, ...
  • Lu SY, Wang SH, Zhang YD. SAFNet: A deep spatial ...
  • Gao F, Wu T, Li J, Zheng B, Ruan L, ...
  • Shadab SA, Ansari MA, Singh N, Verma A, Tripathi P, ...
  • Balkenende L, Teuwen J, Mann RM. Application of deep learning ...
  • Xue n, Zhou Q, Jiarong Ye, Rodney Long L, Antani ...
  • Duggento A, Aiello M, Cavaliere C, Cascella GL, Cascella D, ...
  • Ragab DA, Sharkas M, Marshall S, Ren J. Breast cancer ...
  • Fang Y, Zhao J, Hu L, Ying X, Pan Y, ...
  • Deniz E, Şengür A, Kadiroğlu Z, Guo Y, Bajaj V, ...
  • نمایش کامل مراجع