Crash Injury Analysis of Knee Joint Considering Pedestrian Safety
Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 89
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-9-5_009
تاریخ نمایه سازی: 30 دی 1402
Abstract:
Background: Lower extremity injuries are frequently observed in car-to-pedestrian accidents and due to the bumper height of most cars, knee joint is one of the most damaged body parts in car-to-pedestrian collisions.Objective: The aim of this paper is first to provide an accurate Finite Element model of the knee joint and second to investigate lower limb impact biomechanics in car-to-pedestrian accidents and to predict the effect of parameters such as collision speed and height due to the car speed and bumper height on knee joint injuries, especially in soft tissues such as ligaments, cartilages and menisci.Materials and Methods: In this analytical study, a ۳D finite element (FE) model of human body knee joint is developed based on human anatomy. The model consists of femur, tibia, menisci, articular cartilages and ligaments. Material properties of bones and soft tissues were assumed to be elastic, homogenous and isotropic.Results: FE model is used to perform injury reconstructions and predict the damages by using physical parameters such as Von-Mises stress and equivalent elastic strain of tissues. Conclusion: The results of simulations first show that the most vulnerable part of the knee is MCL ligament and second the effect of speed and height of the impact on knee joint. In the critical member, MCL, the damage increased in higher speeds but as an exception, smaller damages took place in menisci due to the increased distance of two bones in the higher speed.
Keywords:
Authors
M Asgari
PhD, Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
Sh S Keyvanian
MSc, Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :