A Data Replication Algorithm for Improving Server Efficiency in Cloud Computing Using PSO and Fuzzy Systems
Publish place: Computer and Knowledge Engineering، Vol: 6، Issue: 2
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 119
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CKE-6-2_001
تاریخ نمایه سازی: 16 بهمن 1402
Abstract:
In different scientific disciplines, large-scale data are generated with enormous storage requirements. Therefore, effective data management is a critical issue in distributed systems such as the cloud. As tasks can access a nearby site to access the required file, replicating the desired file to an appropriate location improves access time and reliability. Replicating the popular file to an appropriate site is a good choice, as tasks can get the necessary file from a nearby site. In this research, a novel data replication algorithm is proposed that is consisted of four main phases: ۱- determining ۲۰% of commonly used files, ۲- computing five conflicting objectives (i.e., average service time, load variance, energy consumption, average response time and cost) ۳- finding the near-optimal solution (i.e., suitable locations for new replica) by the PSO technique to acquire a trade-off among the desired objectives. ۴- replica replacement considering a fuzzy system with three inputs (i.e., Number of accesses, size of replica and the last access time). The experimental results denote that the proposed replication algorithm outperforms the Profit oriented Data Replication (PDR) and Bee colony-based approach for Data Replication (BCDR) strategies in terms of energy consumption, average response time, load variance, number of connections, Hit ratio, Storage usage, and cost.
Keywords:
Authors
Mostafa Sabzekar
Department of Computer Engineering, Birjand University of Technology, Birjand, Iran
Ehsan Mansouri
Department of Computer and Technology, Birjand University of Medical Sciences, Birjand, Iran
Arash Deldari
Department of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :