Application of Shannon wavelet for solving boundary value problems of fractional differential equations I
Publish place: Wavelets and Linear Algebra، Vol: 1، Issue: 1
Publish Year: 1393
نوع سند: مقاله ژورنالی
زبان: English
View: 173
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_WALA-1-1_004
تاریخ نمایه سازی: 16 بهمن 1402
Abstract:
Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. Therefore, a reliable and efficient technique as a solution is regarded. This paper develops approximate solutions for boundary value problems of differential equations with non-integer order by using the Shannon wavelet bases. Wavelet bases have different resolution capability for approximating of different functions. Since for Shannon-type wavelets, the scaling function and the mother wavelet are not necessarily absolutely integrable, the partial sums of the wavelet series behave differently and a more stringent condition, such as bounded variation, is needed for convergence of Shannon wavelet series. With nominate Shannon wavelet operational matrices of integration, the solutions are approximated in the form of convergent series with easily computable terms. Also, by applying collocation points the exact solutions of fractional differential equations can be achieved by well-known series solutions. Illustrative examples are presented to demonstrate the applicability and validity of the wavelet base technique. To highlight the convergence, the numerical experiments are solved for different values of bounded series approximation.
Keywords:
Boundary value problems Fractional differential equations Shannon wavelet Operational matrix
Authors
K. Nouri
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box: ۱۹۳۹۵-۵۷۴۶, Tehran, Islamic Republic of Iran
N. Bahrami Siavashani
Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, P. O. Box: ۳۵۱۹۵-۳۶۳, Semnan, Islamic Republic of Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :