Quantum modeling of light absorption in graphene based photo-transistors

Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 64

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JOPN-2-1_002

تاریخ نمایه سازی: 25 بهمن 1402

Abstract:

Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a self-energy matrix is introduced which takes the effect of optical absorption in GNR channel into account. The self-energy matrix is treated as a scattering matrix which leads to creation of carriers. The transition matrix element is calculated for optical absorption in graphene channel and is used to obtain the optical interaction self-energy. The resulting self-energy matrix is added to retarded Green’s function and is used in transport equations for calculation of current flow in the photo-transistor. By considering the effect of optical radiation, the dark and photocurrent of detector are calculated and results are used for calculation of responsivity.

Authors

Hamid Faezinia

Department of Electronic Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Mahdi zavvari

Department of Electronic Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • . H. Lu, "Plasmonic characteristics in nanoscale graphene resonator-coupled waveguides," ...
  • . F. Ostovari and M. K. Moravvej-Farshi, "Dual function armchair ...
  • . C. H. Liu, Y. C. Chang, T. B. Norris, ...
  • . A. Y. Goharrizi, M. Pourfath, M. Fathipour, and H. ...
  • . R. F. M. Rostami, H. Rabiee Golgir, "Magnetization of ...
  • . C. Berger, Z. Song, X. Li, W. Wu, N. ...
  • . P. Avouris, Z. Chen, and V. Perebeinos, "Carbon-based electronics," ...
  • . J. Shang, T. Yu, and G. G. Gurzadyan, "Femtosecond ...
  • . K. Nakada, M. Fujita, G. Dresselhaus, and M. S. ...
  • . H. Mohamadpour and A. Asgari, "Graphene nanoribbon tunneling field ...
  • . J. Capmany, D. Domenech, and P. Muñoz, "Silicon graphene ...
  • . P. B. Bennett, Z. Pedramrazi, A. Madani, Y.-C. Chen, ...
  • . F. Bonaccorso, Z. Sun, T. Hasan, and A. C. ...
  • . R. F. H. Rabiee Golgir, M. Pazoki, H. Karamitaheri, ...
  • . A. R. Wright, J. C. Cao, and C. Zhang, ...
  • . J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, ...
  • . J. Li, L. Niu, Z. Zheng, and F. Yan, ...
  • . X. Gan, R. J. Shiue, Y. Gao, I. Meric, ...
  • . F. Withers, T. H. Bointon, M. F. Craciun, and ...
  • . A. U. M. Furchi, A. Pospischil, G. Lilley, K. ...
  • . Q. Gao and J. Guo, "Quantum mechanical simulation of ...
  • . E. Ahmadi and A. Asgari, "Modeling of the infrared ...
  • . S. Datta, Quantum Transport: Atom to Transistor (Cambridge, ۲۰۰۵) ...
  • . M. Pourfath and S. Selberherr, "Current Transport in Carbon ...
  • . S. O. Koswatta, M. S. Lundstrom, and D. E. ...
  • نمایش کامل مراجع