سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Comparative analysis on forecasting methods and how to choose a suitable one: case study in financial time series

Publish Year: 1402
Type: Journal paper
Language: English
View: 93

This Paper With 25 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JMMF-3-2_003

Index date: 9 March 2024

Comparative analysis on forecasting methods and how to choose a suitable one: case study in financial time series abstract

Forecasting in the financial markets is vital for informed decision-making, risk management, efficient capital allocation, asset valuation, and economic stability. This study thoroughly examines forecasting techniques to predict the 30-day closing prices of APPLE in a select group of 100 prominent companies chosen based on their revenue profiles. list of 100 big Companies published by The Fortune Global 500. The evaluated forecasting methods encompass a broad spectrum of approaches, including Moving Average (MA), Exponential Smoothing, Autoregressive Integrated Moving Average (ARIMA), Simple Linear Regression, Multiple Regression, Decision Trees, Random Forests, Neural Networks, and Support Vector Regression (SVR). The information on the dataset was downloaded from Yahoo Finance, and all methods were evaluated in Python. The MAPE method is used to measure the accuracy of the examined methods. Based on the selected dataset, Our findings reveal that SVR, Simple Linear Regression, Neural Networks, and ARIMA consistently outperform other methods in accurately predicting the 30-day APPLE closing prices. In contrast, the Moving Average method exhibits subpar performance, primarily due to its inherent limitations in accommodating the intricate dynamics of financial data, such as trends, seasonality, and unexpected shocks. In conclusion, this comprehensive analysis enhances our understanding of forecasting techniques and paves the way for more informed and precise decision-making in the ever-evolving realm of financial markets.

Comparative analysis on forecasting methods and how to choose a suitable one: case study in financial time series Keywords:

forecasting methods , financial assets , Time series , Mean Absolute Percentage Error (MAPE)

Comparative analysis on forecasting methods and how to choose a suitable one: case study in financial time series authors

Mahdi Goldani

Faculty of Literature and Humanities, Hakim Sabzevari University, Sabzevar, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Armaan, M. S. A., Antony A. S., ۲۰۱۹, A comparison ...
Armstrong, J. S. (Ed.). (۲۰۰۱), Principles of Forecasting: A Handbook ...
Banerjee, D., ۲۰۱۴, Forecasting of Indian stock market using time-series ...
. IEEE ...
Bharathi, S., & Geetha, A. (۲۰۱۷), ”Sentiment analysis for effective ...
Boser, B. E., Guyon, I. M., & Vapnik, V. N. ...
Box, G., ۲۰۱۳, Box and Jenkins: time series analysis, forecasting ...
Breiman, L., ۲۰۰۱, Random forests. Machine Learning ۴۵, ۵-۳۲ ...
https://doi.org/۱۰.۱۰۲۳/A:۱۰۱۰۹۳۳۴۰۴۳۲۴[۸] Chandwani, D., & Saluja, M. S. (۲۰۱۴), ”Stock direction ...
Chatfield, C., ۲۰۰۰, Time-series forecasting, CRC Press, ۲۶۳pp ...
Chatzis, S. P., Siakoulis, V., Petropoulos, A., Stavroulakis, E., Vlachogiannakis, ...
Expert Systems with Applications, ۱۱۲, ۳۵۳-۳۷۱. https://doi.org/۱۰.۱۰۱۶/j.eswa.۲۰۱۸.۰۶.۰۳۲[۱۱] Dharmawan, P. A. ...
Dhyani, B., Kumar, M., Verma, P., Jain, A. ,۲۰۲۰, Stock ...
https://doi.org/۱۰.۳۵۹۴۰/ijrte.f۸۴۰۵.۰۳۸۶۲۰[۱۳] Drucker, H., Burges, C. J. C., Kaufman, L., Smola, ...
Fildes, R., & Kourentzes, N. (۲۰۱۱), ”Validation and forecasting accuracy ...
Ghanbari, M., Arian, H. ,۲۰۱۹, Forecasting stock market with support ...
https://doi.org/۱۰.۴۸۵۵۰/arXiv.۱۹۰۵.۱۱۴۶۲[۱۷] H.-I. Lim, ۲۰۱۹, A Linear Regression Approach to Modeling ...
Hansun, S., & Subanar, S. (۲۰۱۶). ”H-WEMA: A New Approach ...
Hyndman, R. J., Koehler, A. B., Snyder, R. D., & ...
https://doi.org/۱۰.۱۰۱۶/j.trc.۲۰۱۸.۰۳.۰۰۱[۲۵] Kumar, M., Thenmozhi, M. (۲۰۱۴). ”Forecasting stock index returns ...
۲۱۵۱۱/imfi.۱۸(۱).۲۰۲۱.۰۴[۲۹] Meneghini, M., Anzanello, M., Kahmann, A., & Tortorella, G. ...
Mondal, P., Shit, L., Goswami, S. (۲۰۱۴). ”Study of effectiveness ...
Peng, Z., Li X. (۲۰۱۸). ”Application of a multi-factor linear ...
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, ...
Scornet, E., Biau G., Vert, J.-P. (۲۰۱۵). ”Consistency of random ...
Scott, A. J., Fred, C. (۲۰۰۱). Principles of forecasting: a ...
Shah, D., Isah, H., & Zulkernine, F. (۲۰۱۹), ”Stock market ...
Shukor, S. A., Sufahani, S. F., Khalid, K., Abd Wahab, ...
IOP Publishing. https://doi.org/۱۰.۱۰۸۸/۱۷۴۲-۶۵۹۶/۱۸۷۴/۱/۰۱۲۰۸۷[۳۹] Siami-Namini, S., Tavakoli, N., Namin, A. S. ...
Sonkavde, G., Dharrao, D. S., Bongale, A. M., Deokate, S. ...
(۲۰۲۳). ”Forecasting Stock Market Prices Using Machine Learning and Deep ...
ijforecast.۲۰۰۸.۰۷.۰۰۷[۴۳] Uyank, G. K., Guler, N. (۲۰۱۳). ”A study on ...
Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, ...
”Machine learning methods for solar radiation forecasting: A review.” In ...
https://doi.org/۱۰.۴۸۵۵۰/arXiv.۱۵۱۰.۰۴۳۴۲[۴۶] Wang, X., Sun X. (۲۰۱۶). ”An improved weighted naive ...
Wu, J., Liu, C., Cui W., & Zhang Y. (۲۰۱۹). ...
Wu, Y., Tan, H., Qin, L., Ran, B., & Jiang, ...
Zeroual, A., Harrou, F., Dairi, A., & Sun, Y. (۲۰۲۰). ...
نمایش کامل مراجع