Grading of Gliomas by Contrast-Enhanced CT Radiomics Features

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 98

This Paper With 8 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JBPE-14-2_005

تاریخ نمایه سازی: 18 فروردین 1403

Abstract:

Background: Gliomas, as Central Nervous System (CNS) tumors, are greatly common with ۸۰% of malignancy. Treatment methods for gliomas, such as surgery, radiation therapy, and chemotherapy depend on the grade, size, location, and the patient’s age. Objective: This study aimed to quantify glioma based on the radiomics analysis and classify its grade into High-grade Glioma (HGG) or Low-grade Glioma (LGG) by various machine-learning methods using contrast-enhanced brain Computerized Tomography (CT) scans. Material and Methods: This retrospective study involved acquiring and segmenting data, selecting and extracting features, classifying, analyzing, and evaluating classifiers. The study included a total of ۶۲ patients (۳۱ with LGG and ۳۱ with HGG). The tumors were segmented by an experienced CT-scan technologist with ۳D slicer software. A total of ۱۴ shape features, ۱۸ histogram-based features, and ۷۵ texture-based features were computed. The Area Under the Curve (AUC) and Receiver Operating Characteristic Curve (ROC) were used to evaluate and compare classification models. Results: A total of ۱۳ out of ۱۰۷ features were selected to differentiate between LGGs and HGGs and to perform various classifier algorithms with different cross-validations. The best classifier algorithm was linear-discriminant with ۹۳.۵% accuracy, ۹۶.۷۷% sensitivity, ۹۰.۳% specificity, and ۰.۹۸% AUC in the differentiation of LGGs and HGGs.  Conclusion: The proposed method can identify LGG and HGG with ۹۳.۵% accuracy, ۹۶.۷۷% sensitivity, ۹۰.۳% specificity, and ۰.۹۸% AUC, leading to the best treatment for glioma patients by using CT scans based on radiomics analysis.

Authors

Mohammad Maskani

Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Samaneh Abbasi

Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Hamidreza Etemad-Rezaee

Department of Neurosurgery, Ghaem Teaching Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Hamid Abdolahi

Department of Radiologic Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran

Amir Zamanpour

Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Alireza Montazerabadi

Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, ...
  • Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, ...
  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, ...
  • Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger ...
  • Wen PY, Reardon DA. Neuro-oncology in ۲۰۱۵: Progress in glioma ...
  • Coons SW, Johnson PC, Scheithauer BW, Yates AJ, Pearl DK. ...
  • Law M, Cha S, Knopp EA, Johnson G, Arnett J, ...
  • Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, ...
  • Mizobuchi Y, Nakajima K, Fujihara T, Matsuzaki K, Mure H, ...
  • Raab SS, Grzybicki DM, Janosky JE, Zarbo RJ, Meier FA, ...
  • Davanian F, Faeghi F, Shahzadi S, Farshifar Z. Diffusion Tensor ...
  • Hakyemez B, Erdogan C, Ercan I, Ergin N, Uysal S, ...
  • Kousi E, Tsougos I, Tsolaki E, Fountas KN, Theodorou K, ...
  • Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, ...
  • Ditmer A, Zhang B, Shujaat T, Pavlina A, Luibrand N, ...
  • Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More ...
  • Stadler KL, Ruth JD, Pancotto TE, Werre SR, Rossmeisl JH. ...
  • Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf ...
  • Bonte S, Goethals I, Van Holen R. Individual prediction of ...
  • Zhang Z, Xiao J, Wu S, Lv F, Gong J, ...
  • نمایش کامل مراجع