Automatic fault diagnosis of computer networks based on a combination BP neural network and fuzzy logic
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 138
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-5_015
تاریخ نمایه سازی: 18 فروردین 1403
Abstract:
Today, computer network fault diagnosis is one of the key challenges experts are facing in the field of computer networks. Therefore, achieving an automatic diagnosis system which is based on artificial intelligence methods and is able to diagnose faults with maximum accuracy and speed is of high importance. One of the methods which is studied and utilized up to now is artificial neural networks with a back propagation algorithm while using neural networks with a back propagation algorithm has two main challenges in front. The first challenge is related to the backpropagation learning type as it is a supervised learning requiring inductive knowledge driven from previous conditions. The second challenge is the long time required for training such a neural network. In this work, combining neural networks with a backpropagation algorithm and fuzzy logic is applied as a method for confronting these challenges. The result of this study shows that fuzzy clustering is able to provide the inductive knowledge required for backpropagation learning by determining the membership degree of training samples to different clusters of network faults. Also, according to the simulations taken place, implementing a fuzzy controller in determining the learning rate in each backpropagation iteration has resulted in successful outcomes. Thus, the learning speed of this algorithm has been increased in comparison to the constant learning rate mode resulted in reducing the training time duration of this neural networks.
Keywords:
Computer Networks Fault Diagnosis , Artificial Neural Networks , Back Propagation Algorithm , Fuzzy Clustering , Fuzzy Controller
Authors
Elham Bideh
Department of Computer Engineering, Shomal University, Amol, Iran
Mohammadreza Fadavi Amiri
Department of Computer Engineering, Shomal University, Amol, Iran
Javad Vahidi
Department of Computer Science, Iran University of Science and Technology, Tehran, Iran
Majid Iranmanesh
Department of Mathematics, Semnan University, Semnan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :