Extreme Event-based Rainfall-runoff Simulation Utilizing GIS Techniques in Irawan Watershed, Palawan, Philippines
Publish place: Civil Engineering Journal، Vol: 9، Issue: 1
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 113
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CEJ-9-1_017
تاریخ نمایه سازی: 2 اردیبهشت 1403
Abstract:
River flow assessments and ecologically sustainable water management plans are now possible due to the advancement of sophisticated computer models. The US Army Corps of Engineers developed the HEC-HMS model, which can be used for various hydrological simulations. Rainfall-runoff modeling aids in estimating peak flows, which is critical for water resource management planning. On December ۱۸, ۲۰۱۷, a heavy rainfall event in the ungauged Irawan basin in Puerto Princesa City, Palawan, Philippines, was simulated to determine the peak flow and amount of water. The current research aims to construct a rainfall-runoff simulation model. A specific hyetograph is used to make the hydrographs for the basin. This study utilizes ArcGIS and QGIS, which perform the geospatial analysis and provide the HEC-HMS model's hydrologic modeling inputs. The hydrological parameters were determined using soil type, land use, and land cover maps. Incorporating SCS loss, Clark unit hydrograph, and Muskingum flow routing, HEC-HMS was employed in the rainfall-runoff simulation. Rainfall data corresponding to the recorded streamflow was used to calibrate and validate the parameters. Several performance metrics, including Nash-Sutcliffe efficiency (NSE) and Percentage Bias (PBIAS), were utilized to evaluate the overall effectiveness of the system. An effective decision-making and warning system can be implemented using the developed model. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۳-۰۹-۰۱-۰۱۷ Full Text: PDF
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :