New Variational Principles for Two Kinds of Nonlinear Partial Differential Equation in Shallow Water

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 193

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JACM-10-2_014

تاریخ نمایه سازی: 23 اردیبهشت 1403

Abstract:

Variational principles are very important for a lot of nonlinear problems to be analyzed theoretically or solved numerically. By the popular semi-inverse method and designing trial-Lagrange functionals skillfully, new variational principles are constructed successfully for the Kuramoto-Sivashinsky equation and the Coupled KdV equations, respectively, which can model a lot of nonlinear waves in shallow water. The established variational principles are also proved correct. The procedure reveals that the used technologies are very powerful and applicable, and can be extended to other nonlinear physical and mathematical models.

Authors

Xiao-Qun Cao

College of Meteorology and Oceanography, National University of Defense Technology, Changsha ۴۱۰۰۷۳, China

Meng-Ge Zhou

College of Meteorology and Oceanography, National University of Defense Technology, Changsha ۴۱۰۰۷۳, China

Si-Hang Xie

College of Meteorology and Oceanography, National University of Defense Technology, Changsha ۴۱۰۰۷۳, China

Ya-Nan Guo

College of Meteorology and Oceanography, National University of Defense Technology, Changsha ۴۱۰۰۷۳, China

Ke-Cheng Peng

College of Meteorology and Oceanography, National University of Defense Technology, Changsha ۴۱۰۰۷۳, China

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Gu, C.H., Soliton Theory and Its Application, Zhejiang Science and ...
  • Ablowitz, M.J., Clarkson, P.A., Solitons, Nonlinear Evolution Equations and Inverse ...
  • Cao, X.Q., Guo, Y.N., Zhang, C.Z., Hou, S.C., Peng, K.C., ...
  • He, J.H., Jiao, M.L., Gepreel, K.A., Khan, Y., Homotopy perturbation ...
  • He, J.H., Amer, T.S., El Kafly, H.F., Galal, A.A., Modelling ...
  • Liu, S.K., Fu, Z.T., Expansion method about the Jacobi elliptic ...
  • Wang, K.L., Exact travelling wave solution for the local fractional ...
  • Wang, K.J., Generalized variational principles and new abundant wave structures ...
  • He, J.H., Exp-function method for fractional differential equations, International Journal ...
  • He, J.H., Some asymptotic methods for strongly nonlinear equations, International ...
  • Guner, O., Bekir, A., Exp-function method for nonlinear fractional differential ...
  • Wu, Y., Variational approach to higher-order water-wave equations, Chaos, Solitons ...
  • Durgun, D.D., Fractional variational iteration method for time-fractional nonlinear functional ...
  • He, J.H., Variational iteration method—a kind of non-linear analytical technique: ...
  • Noor, M.A., Mohyud-Din, S.T., Variational iteration method for solving higher-order ...
  • Momani, S., Abuasad, S., Application of He's variational iteration method ...
  • Cao, X.Q., Peng, K.C., Liu, M.Z., Zhang, C.Z., Guo, Y.N., ...
  • Khakimzyanov, G.S., Fedotova, Z.I., Gusev, O.I., Shokina, N.Y., Finite difference ...
  • He, J.H., A short remark on fractional variational iteration method, ...
  • Mohammad, Z., Omid, G., Using natural element mesh-free numerical method ...
  • Kao, H.M., Chang, T.J., Numerical modeling of dam break-induced flood ...
  • Baleanu, D., A modified fractional variational iteration method for solving ...
  • He, J.H., Taylor series solution for a third order boundary ...
  • Chong, C., Pelinovsky, D.E., Variational approximations of bifurcations of asymmetric ...
  • Chong, C., Pelinovsky, D.E., Schneider, G., On the validity of ...
  • Putri, N.Z., Asfa, A.R., Fitri, A., Bakri, I., Syafwan, M., ...
  • He, J.H., A modified Li-He’s variational principle for plasma, International ...
  • Liu, M.Z., Zhu, X.Q., Cao, X.Q., Liu, B.N., Peng, K.C., ...
  • Cao, X.Q., Zhang, C.Z., Hou, S.C., Guo, Y.N., Peng, K.C., ...
  • Cao, X.Q., Variational principles for two kinds of extended Korteweg-de ...
  • Cao, X.Q., Generalized variational principles for Boussinesq equation systems, Acta ...
  • He, J.H., Sun, C., A variational principle for a thin ...
  • He, J.H., Variational principle for the generalized KdV-burgers equation with ...
  • Yue, S., He, J.H., Variational principle for a generalized KdV ...
  • He, J.H., Variational principle and periodic solution of the Kundu-Mukherjee-Naskar ...
  • Cao, X.Q., Guo, Y.N., Hou, S.C., Zhang, C.Z., Peng, K.C., ...
  • Cao, X.Q., Liu, B.N., Liu, M.Z., Peng, K.C., Tian, W.L., ...
  • Kuramoto, Y., Diffusion-Induced Chaos in Reaction Systems, Progress of Theoretical ...
  • Kuramoto, Y., Tsuzuki, T., On the formation of dissipative structures ...
  • Sivashinsky, G.I., Nonlinear analysis of hydrodynamic instability in laminar flames—I. ...
  • Vlachas, P.R., Pathak, J., Hunt, B.R., Sapsis, T.P., Girvan, M., ...
  • Brummitt, C.D., Sprott, J., A search for the simplest chaotic ...
  • Hirota, R., Satsuma, J., Soliton solutions of a coupled Korteweg-de ...
  • Beals, R., Sattinger, D., Solitons and nonlinear wave equations, Society ...
  • Yan, Z., The extended Jacobian elliptic function expansion method and ...
  • نمایش کامل مراجع