Fabrication and Characterization of Beam Quality Phantom for External Beam Radiotherapy

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 38

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJMP-21-2_004

تاریخ نمایه سازی: 6 خرداد 1403

Abstract:

Introduction: Radiation dose measurement plays a major role in Radiation Dosimetry. Effective dose delivery to the patient is ensured with the recommendation of some protocol called Quality assurance (QA). It is necessary to confirm that the beam that is used for treatment is a good quality beam and it is given by beam quality factor TPR ۲۰/۱۰ which is one of the QA protocols. Material and Methods: In the present TPR۲۰,۱۰ phantom both depth (۲۰ and ۱۰ cm) doses can be measured at the same procedure without changing any setup. As the reference condition is maintained, the Gelatin-based phantom is kept for irradiation in the Siemens Linear Accelerator (LINAC) machine. Initially Source Axis Distance (SAD) of ۱۰۰ cm from the surface and ۱۰×۱۰ cm۲ of field size. The measurement is taken by ion chamber at ۱۰ and ۲۰ cm depth in gantry angles ۹۰° and ۲۷۰° And the ratio of these values is taken and compared with the measurements of the water-based TPR phantom. Results: The values for the TPR۲۰,۱۰ ratio for the Gelatin and water phantom are measured using the above method and the values are tabulated and compared. Likewise, the output measurements are done and tabulated for comparison. These measurements are carried out for several days to check the repeatability, and reproducibility of the phantom. Also, the measured set of values was analyzed using mean, median, standard deviation, etc.    Conclusion: The fabricated phantom had good outcomes in its response. And the result projects that the phantom can be a better alternative for the other phantom materials and gelatin has more advantages over water, we conclude that gel can be used for better dosimetric procedures.

Keywords:

Tissue Equivalent Phantom External Beam Radiotherapy TPR۲۰ , ۱۰ , Gelatin

Authors

Boopathi M

Department of Physics, School of Engineering and Technology, Karunya Institute of Technology and Science, Coimbatore, Tamilnadu. Dharan Cancer Specialty Center Pvt Ltd, Salem, Tamilnadu, India

D Khanna

Department of Physics, School of Engineering and Technology, Karunya Institute of Technology and Science, Coimbatore, Tamilnadu.

Pitchaikannu Venkatraman

Department of Radiotherapy and Radiation Medicine, Banaras Hindu University, Varanasi-۲۲۱۰۰۵, India. Department of Medical Physics, Bharathiar University, Coimbatore- ۶۴۱۰۴۶, Tamilnadu, India.

Joshua J

HCG Cancer Hospital - (Mansarovar, Jaipur), India.

Sureka C S

Department of Medical Physics, Bharathiar University, Coimbatore- ۶۴۱۰۴۶, Tamilnadu, India.

Varshini Raju

Department of Medical Physics, PSG IMSR & Hospitals, Coimbatore - Tamil Nadu – India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Podgorsak EB. Review of radiation oncology physics: a handbook for ...
  • DK B. Central axis depth dose data for use in ...
  • Musolino SV. Absorbed dose determination in external beam radiotherapy: an ...
  • Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, ...
  • Pychlau P, Schule E. The exposure rate of a radioactive ...
  • Christ G. White polystyrene as a substitute for water in ...
  • Alam MJ, Rabbani KS, Zakaria GA, Hussain SA, Kiber A, ...
  • Thwaites D. Use of computers in external beam radiotherapy procedures ...
  • International Commission on Radiation Units and Measurements. Tissue substitutes in ...
  • Van Dyk J, Rosenwald JC, Fraass B, Cramb J, Ionescu-Farca ...
  • Ceberg C, Johnsson S, Lind M, Knöös T. Prediction of ...
  • Kawrakow I. The EGSnrc code system, Monte Carlo simulation of ...
  • Rogers DW, Faddegon BA, Ding GX, Ma CM, We J, ...
  • Walters BR, Kawrakow I, Rogers DW. DOSXYZnrc User’s Manual. NRCC ...
  • Constantin M, Perl J, LoSasso T, Salop A, Whittum D, ...
  • Tonkopi E, McEwen MR, Walters BR, Kawrakow I. Influence of ...
  • McEwen MR, Kawrakow I, Ross CK. The effective point of ...
  • Rogers DW, Yang CL. Corrected relationship between and stopping‐power ratios. ...
  • Kalach NI, Rogers DW. Which accelerator photon beams are “clinic‐like” ...
  • Titt U, Vassiliev ON, Pönisch F, Dong L, Liu H, ...
  • Cashmore J. The characterization of unflattened photon beams from a ...
  • Thomas SJ, Aspradakis MM, Byrne JP, Chalmers G, Duane S, ...
  • Sauer OA. Determination of the quality index for photon beams ...
  • Palmans H. Determination of the beam quality index of high‐energy ...
  • BIR British Institute of Radiology. Central axis depth dose data ...
  • Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, ...
  • Deutsches Institut für Normung. Dosismessverfahren nach der Sondenmethode für Photonen‐und ...
  • Lillicrap SC, Owen B, Williams JR, Williams PC. Code of ...
  • The Netherlands Commission on Radiation Dosimetry (NCS). Code of Practice ...
  • Musolino SV. Absorbed dose determination in external beam radiotherapy: an ...
  • Alipal J, Pu'Ad NM, Lee TC, Nayan NH, Sahari N, ...
  • Pearce JA, Bass GA. Determination of beam quality index, TPR۲۰/۱۰, ...
  • Howitz S, Schwedas M, Wiezorek T, Zink K. Experimental and ...
  • نمایش کامل مراجع