Enhanced Autoregressive Integrated Moving Average Model for Anomaly Detection in Power Plant Operations
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 231
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-8_018
تاریخ نمایه سازی: 23 خرداد 1403
Abstract:
This study introduces an Enhanced Autoregressive Integrated Moving Average (E-ARIMA) model for anomaly detection in time-series data, using vibrations monitored by CA ۲۰۲ accelerometers at the Kirkuk Gas Power Plant as a case study. The objective is to overcome the limitations of traditional ARIMA models in analyzing the non-linear and dynamic nature of industrial sensory data. The novel proposed methodology includes data preparation through linear interpolation to address dataset gaps, stationarity confirmation via the Augmented Dickey-Fuller Test, and ARIMA model optimization against the Akaike Information Criterion, with a specialized time-series cross-validation technique. The results show that E-ARIMA model has superior performance in anomaly detection compared to conventional Seasonal ARIMA (SARIMA) and Vector Autoregressive models. In this regard, Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) criteria were utilized for this evaluation. Finally, the most important achievement of this research is that the results highlight the enhanced predictive accuracy of the E-ARIMA model, making it a potent tool for industrial applications such as machinery health monitoring, where early detection of anomalies is crucial to prevent costly downtimes and facilitate maintenance planning.
Keywords:
Vibration monitoring , Time-series data , Anomaly Detection , Autoregressive integrated moving average , Gas power plant
Authors
A. T. W. Khalid Fahmi
Department of Mechanical Engineering, Academy of Engineering, RUDN University, Moscow, Russian Federation
K. R. Kashyzadeh
Department of Transport Equipment and Technology, Academy of Engineering, RUDN University, Moscow, Russian Federation
S. Ghorbani
Department of Mechanical Engineering, Academy of Engineering, RUDN University, Moscow, Russian Federation
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :