A hybrid content and context-based method for sarcasm detection
Publish place: Computer and Knowledge Engineering، Vol: 7، Issue: 1
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 261
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CKE-7-1_006
تاریخ نمایه سازی: 26 خرداد 1403
Abstract:
With the growing use of social media, figurative language has become very common on social media platforms. Given its complexity, figurative language can confuse natural language processing systems and lead to incorrect results. To address this issue, researchers have developed methods to detect humor, jokes, irony, and especially sarcasm. To date, most studies have used deep learning methods to identify sarcasm. Some studies have also incorporated context such as previous posts or conversations to improve the accuracy of sarcasm detection. But the context that can be highly effective in detecting the sarcasm of posts is the characteristics of the writer of the posts. So, the present paper aims to develop a hybrid approach that combines content and context features to better identify sarcastic posts. i.e., this study additionally proposes a deep learning method to model the content of tweets and suggests a multi-dimensional method that considers the user’s writing style and personality traits as context features. Several experiments were used to evaluate the effectiveness of the proposed method. The results indicated that the proposed method outperformed baseline methods in sarcasm detection.
Keywords:
Authors
Zahra Keivanlou-Shahrestanaki
Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
Mohsen Kahani
Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
Fattane Zarrinkalam
Computer Engineering, School of Engineering, University of Guelph, Canada.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :